期刊文献+

基于OCAE-SOM的室内指纹定位算法研究 被引量:3

Research on Fingerprint Location Algorithm Based on OCAE-SOM
原文传递
导出
摘要 针对室内定位技术精度较低及数据量过大影响运算时间等问题,提出基于OCAE-SOM(Optimized Convolutional Autoencoder-Self Organizing Map)的室内指纹定位算法。离线阶段,先将信道状态信息的幅值相位预处理矩阵作为原始输入数据,并调整为RGB(Red,Green,Blue)格式训练卷积自编码器,使其可深度挖掘参考点的指纹特征,采用Adam算法优化CAE算法的参数,既降低数据维度又能提升训练效率;然后采用OCAE-SOM算法训练模型,可以缩短单独训练模型的时间;最后采用Adam算法优化SOM的权重,可较好地保留输出特征间的相关性,避免权重参数出现局部最优。在线阶段,将调整后的测试数据输入到OCAE-SOM算法中,经匹配后可得到输出位置点。实验结果表明,该算法模型在定位时间与精度上显著优于已有算法,具有一定的应用价值。 Aiming at the problems of low accuracy of indoor positioning technology and computational complexity,an indoor fingerprint location algorithm based on optimized convolutional autoencoder-self organizing map(OCAESOM)is proposed.In the offline stage,first,we use the amplitude and phase-preprocessing matrix of a channel state information as the original input data and adjust it to the RGB format to train the convolutional autoencoder(CAE)algorithm so that it can deeply mine the fingerprint features of a reference point.The Adam algorithm is employed to optimize the parameters of the CAE algorithm,which not only reduces the data dimension but also improves training efficiency.Then,we use the OCAE-SOM algorithm for model training.It can shorten the time to train the model separately.Finally,we use the Adam algorithm to optimize the weight of the self-organizing map,which can be better retain the correlation between output features to avoid the local optimization of weight parameters.In the online stage,the adjusted test data are input into the OCAE-SOM algorithm,and the output location point is obtained after matching.The experimental results show that the OCAE-SOM algorithm is significantly better than existing algorithms in terms of positioning time and accuracy,and it has certain application values.
作者 李新春 纪小璐 魏武 王藜谚 谷永延 曹大焱 Li Xinchun;Ji Xiaolu;Wei Wu;Wang Liyan;Gu Yongyan;Cao Dayan(School of Electronic and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China;Graduate School,Liaoning Technical University,Huludao,Liaoning 125105,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第8期296-306,共11页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61372058)。
关键词 测量 信道状态信息 室内定位 卷积自编码器 自组织映射 Adam算法 measurement channel state information indoor localization convolutional autoencoder self-organizing map Adam algorithm
  • 相关文献

参考文献11

二级参考文献62

  • 1刘成.LBS定位技术研究与发展现状[J].导航定位学报,2013,1(1):78-83. 被引量:54
  • 2张宁,贾自艳,史忠植.使用KNN算法的文本分类[J].计算机工程,2005,31(8):171-172. 被引量:98
  • 3郭山清,高丛,姚建,谢立.基于改进的随机森林算法的入侵检测模型(英文)[J].软件学报,2005,16(8):1490-1498. 被引量:18
  • 4Liu Hui, Darabi H, Banerjee P, et al. Survey of wireless indoor positioning techniques and systems[J], IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(6): 1067-1080.
  • 5Bialer 0, Raphaeli D, and Weiss A .J. Maximum-likelihood direct position estimation in dense multipath[J]. IEEE Transactions on Vehicular Technology, 2013, 62(5): 2069-2079.
  • 6Wang Gang, Li You-ming, and Ansari N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements[J]. IEEE Transactions on Vehicular Technology, 2013, 62(2): 853-862.
  • 7Sen S, LeeJ, Kim K H, et al. Avoiding multipath to revive inbuilding WiFi localization[C]. Proceedings of llth Annual International Conference on Mobile Systems, Applications, and Services, Taipei, 2013: 249-262.
  • 8Liu Hong-bo, YangJie, Sidhom S, et al. Accurate WiFi based localization for smartphones using peer assistance[J]. IEEE Transactions on Mobile Computing, 2014, 13(10): 2199-2214.
  • 9Ji M, KimJ, Cho Y, et al. A novel WiFi AP localization method using monte carlo path-loss model fitting simulation[C]. Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, 2013: 3487-3491.
  • 10KooJ and Cha H. Localizing WiFi access points using signal strength[J]. IEEE Communications Letters, 2011, 15(2): 187-189.

共引文献153

同被引文献33

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部