期刊文献+

MARVEL:Multi-Agent Reinforcement Learning for VANET Delay Minimization 被引量:2

下载PDF
导出
摘要 In urban Vehicular Ad hoc Networks(VANETs),high mobility of vehicular environment and frequently changed network topology call for a low delay end-to-end routing algorithm.In this paper,we propose a Multi-Agent Reinforcement Learning(MARL)based decentralized routing scheme,where the inherent similarity between the routing problem in VANET and the MARL problem is exploited.The proposed routing scheme models the interaction between vehicles and the environment as a multi-agent problem in which each vehicle autonomously establishes the communication channel with a neighbor device regardless of the global information.Simulation performed in the 3GPP Manhattan mobility model demonstrates that our proposed decentralized routing algorithm achieves less than 45.8 ms average latency and high stability of 0.05%averaging failure rate with varying vehicle capacities.
出处 《China Communications》 SCIE CSCD 2021年第6期1-11,共11页 中国通信(英文版)
基金 This work is supported by the National Science Foundation of China under grant No.61901403,61790551,and 61925106,Youth Innovation Fund of Xiamen No.3502Z20206039 and Tsinghua-Foshan Innovation Special Fund(TFISF)No.2020THFS0109.
  • 相关文献

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部