期刊文献+

融合高效用模式的在线媒体突发话题发现 被引量:2

Bursty topic discovery of online media incorporating high utility pattern
原文传递
导出
摘要 在线媒体拥有海量的非结构化数据,包含大量的突发话题和普通话题.传统的话题模型在不加入先验信息的情况下,无法有效区分普通话题和突发话题.本文的研究提出基于高效用模式和话题模型的突发话题发现(high utility bursty topic model,HU-BTM)模型.该模型使用高效用模式挖掘找出文本数据中的突发词组,使用基于普通Polya坛子模型的Gibbs抽样方法,将突发词组与突发词引入话题模型,实现突发话题的自动识别.实验结果表明与现有的主要突发话题发现方法比较,HU-BTM模型在准确率和召回率指标上优于对比算法. Online media carry a huge amount of unstructured data,including a large number of common topics.Without prior information,the traditional topic model cannot effectively distinguish ordinary topics and emergent topics.In this paper,a high utility bursty topic model(HU-BTM)based on high utility pattern and topic model is proposed.In HU-BTM,bursty phrases and bursty words are found through high utility mining,and Gibbs sampling method based on general Polya urn model is used to introduce bursty phrases and bursty words into topic model to realize automatic discovery of bursty topic.The experimental results show that compared with the existing mainstream methods for discovering Bursty topics,the HU-BTM has better performances of precision and recall.
作者 闫志华 唐锡晋 YAN Zhihua;TANG Xijin(Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2021年第5期1138-1149,共12页 Systems Engineering-Theory & Practice
基金 国家重点研发基金(2016YFB1000902) 国家自然科学基金(71731002,71971190)。
关键词 高效用模式 突发话题发现 话题模型 在线媒体 high-utility pattern bursty topic discovery topic model online media
  • 相关文献

参考文献5

二级参考文献44

  • 1WANGShouyang,YULean,K.K.LAI.CRUDE OIL PRICE FORECASTING WITH TEI@I METHODOLOGY[J].Journal of Systems Science & Complexity,2005,18(2):145-166. 被引量:73
  • 2魏永忠.论我国城市社会安全指数的预警等级与指标体系[J].中国行政管理,2007(2):89-94. 被引量:17
  • 3闫妍,许伟,部慧,宋洋,张文,袁宏,汪寿阳.基于TEI@I方法论的房价预测方法[J].系统工程理论与实践,2007,27(7):1-9. 被引量:49
  • 4李恒训,张华平,秦鹏,等.基于主题词的网络热点话题发现[C].见:第五届全国信息检索学术会议论文集.上海:中国中文信息学会,2009:134-143.
  • 5Fang L, Peress J. Media coverage and the cross-section of stock returns[J]. Journal of Finance, 2009, 64(5): 2023-2052.
  • 6Tetlock P C. Giving content to investor sentiment: The role of media in the stock market[J]. Journal of Finance, 2007, 62(3): 1139-1168.
  • 7Cohen A, Nachmias R. What can instructors and policy makers learn about Web-supported learning through Web-usage mining[J]. Internet and Higher Education, 2011, 14(2): 67-76.
  • 8Adam N, Stiles R, Zimdars A, et al. Consequence analysis of complex events on critical U.S. infrastructure[J]. Communications of the ACM, 2013, 56(6): 83-91.
  • 9Fogli D, Guida G. Knowledge-centered design of decision support systems for emergency management [J]. Decision Support Systems, 2013, 55(1): 336-347.
  • 10Oh O, Agrawal M, Rao H R. Community intelligence and social media services: A rumor theoretic analysis of Tweets during social crises[J]. MIS Quarterly, 2013, 37(2): 407-426.

共引文献92

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部