期刊文献+

基于元学习的航空电子设备特征选择算法推荐方法 被引量:5

Recommendation method for avionics feature selection algorithm based on meta-learning
下载PDF
导出
摘要 为了对航空电子设备的测试数据进行有效约简,去除冗余信息和不相关特征,基于机器学习领域现有的特征选择算法,提出了一种元学习框架下的航空电子设备特征选择算法推荐方法。所提方法旨在根据不同航空电子设备测试数据所蕴含的信息,推荐合适的特征选择算法。首先,分析了数据集特征的描述方法。然后,介绍了采用综合度量指数的算法性能评价方法。最后,给出了特征选择算法推荐方法的框架。使用42个航空电子设备的测试数据和13个过滤型特征选择算法建立了元数据库,采用留一法进行交叉验证,推荐命中率达到了90%以上,推荐性能比例达到97%以上。 In order to reduce the test data of avionics effectively and remove redundant information and irrelevant features,based on the existing feature selection algorithms in the field of machine learning,a recommendation method for avionics feature selection algorithm under the meta-learning framework is proposed.The proposed method aims to recommend appropriate feature selection algorithms according to the information contained in the test data of different avionics.Firstly,the description method of data set feature is analyzed.Then,the algorithm performance evaluation method based on the multi-metric index is introduced.Finally,the framework of recommendation method for feature selection algorithm is given.A metadata database is established on 42 avionics data sets and 13 filtering feature selection algorithms,the leave-one-out method is used for cross validation.The recommended hit radio reaches more than 90%and the recommended performance radio reaches more than 97%.
作者 李睿峰 许爱强 孙伟超 王树友 LI Ruifeng;XU Aiqiang;SUN Weichao;WANG Shuyou(Naval Aviation University, Yantai 264001, China)
机构地区 海军航空大学
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第7期2011-2020,共10页 Systems Engineering and Electronics
基金 军内科研项目(4172122113R)资助课题。
关键词 故障诊断 元学习 特征选择 算法推荐 航空电子设备 fault diagnosis meta-learning feature selection algorithm recommendation avionics
  • 相关文献

参考文献3

二级参考文献118

  • 1陈渤,刘宏伟,保铮.一种融合核优化算法[J].西安电子科技大学学报,2007,34(4):509-513. 被引量:5
  • 2Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 3Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 4Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 5Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 6Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 7Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 8Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.
  • 9Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426.
  • 10Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207.

共引文献221

同被引文献32

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部