摘要
为研究10 kV紧凑型异步电机额定工况运行时,内、外双风扇作用下电机内的流体流动状况以及电机各部件的温度分布情况,采用流体场与温度场耦合的方法建立电机三维散热模型,并对内外风扇以及转子自力性扇叶周围空气建立旋转气域模型。将电磁场有限元仿真计算得到的绕组铜耗、定子铁心损耗、转子铝耗等作为热源,在计算流体力学理论分析的基础上,对电机温度场作出合理的基本假设并给出相应的边界条件,通过流热耦合仿真计算得到电机在双风扇随轴转动情况下电机内外流体场中流体流动及电机各部件温度的空间分布特征。仿真结果表明,电机温度最大值位于转子绕组中部,定子绕组温度最大值为113℃,满足F级绝缘要求;内风扇工作时可以有效降低定、转子温度。
In order to analyze the fluid flow and temperature distribution of 10 kV compact asynchronous motor under the action of internal and external fans under rated working conditions,a three-dimensional heat dissipation model of the motor is established by coupling the flow field with the temperature field,and a rotating air region model is established for the internal and external fans and the air around the rotor self-propelled fan.Based on the theoretical analysis of computational fluid dynamics,the reasonable basic assumption of the temperature field of the motor is made and the corresponding boundary conditions are given.Through the fluid thermal coupling simulation,the fluid flow field inside and outside the motor under the condition of double fans rotating with the shaft and the spatial distribution characteristics of the temperature of each component of the motor are obtained.The simulation results show that the maximum temperature of the motor is located in the middle of the rotor bar,and the maximum temperature of the stator winding is 113℃,which meets the F-class insulation requirements.The stator and rotor temperature can be effectively reduced when the internal fan is working.
作者
贾振宇
曲兵妮
宋建成
赵勇
JIA Zhenyu;QU Bingni;SONG Jiancheng;ZHAO Yong(National and Local Joint Engineering Laboratory of Mining Intelligent Electrical Equipment Technology,Taiyuan University of Technology,Taiyuan 030024,China;School of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《电机与控制应用》
2021年第6期77-82,共6页
Electric machines & control application
基金
山西省重点研发计划项目(201803D121008)。
关键词
紧凑型高压异步电机
有限元分析
双风扇
流热耦合
温度场
compact high-voltage asynchronous motor
finite element analysis
two fans
fluid thermal coupling
temperature field