期刊文献+

基于深度学习和遥感影像的露天矿自动提取方法研究 被引量:7

Research on automatic extraction method of open-pit mine based on deep learning and remote sensing images
下载PDF
导出
摘要 非法开采不仅危害国家资源,威胁国家财产安全,也存在重大安全隐患,寻找快速发现非法开采行迹的解决办法迫在眉睫。利用光学遥感影像进行人工解译,费时费力、效率极低;而传统的露天矿遥感自动解译方法,或基于像素,或基于面向对象,利用的图像特征简单且数量较少。将深度学习的全卷积神经网络算法引入露天矿自动提取中,充分从底层特征中挖掘大量高层抽象特征,实现露天矿智能高效解译。实验结果表明,该方法在一定程度上有效提高了露天矿识别的准确率,能够为及时发现非法露天矿开采提供基础的数据技术支持。 Illegal mining occurs frequently,which not only endangers national resources and threatens the security of national property,but also may bring major security risks.Therefore,it is extremely urgent to find a solution to early and quickly find the illegal mining track.The manual interpretation of optical remote sensing image is time-consuming and laborious,and the efficiency is extremely low.Traditional automatical open-pit mine interpretation in remote sensing method is either based on pixels,or object-oriented,which uses simple and limited image characteristics.In this paper we introduce the deep learning algorithm FCN into open-pit mine automatic extraction.This method can fully dig high-level features from the underlying ones,realizing the interpretation of open-pit mine intelligently and efficiently.The experimental results showed that,the method improves the accuracy of open-pit mine recognition in a certain extent,which will provide a fundenmental technical support for the timely detection of illegal open mining.
作者 刘发发 韩红太 张敏 麻连伟 Liu Fafa;Han Hongtai;Zhang Min;Ma Lianwei(Henan Institute of Geophysics and Spatial Information,Zhengzhou 450009,China;Henan Geological and Geophysical Exploration Engineering Technology Research Center,Zhengzhou 450009,China)
出处 《能源与环保》 2021年第6期82-85,262,共5页 CHINA ENERGY AND ENVIRONMENTAL PROTECTION
基金 河南省自然资源科研项目资助(豫财招标采购-2019-379-15)。
关键词 深度学习 全卷积神经网络 光学遥感影像 露天矿 自动提取 deep learning fully convolution networks optical remote sensing images open-pit mine automatic extraction
  • 相关文献

参考文献4

二级参考文献19

共引文献102

同被引文献86

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部