期刊文献+

基于监控视频的Farneback光流算法的人体异常行为检测 被引量:12

Human abnormal action detection based on the Farneback optical flow arithmetic of surveillance video
原文传递
导出
摘要 为了解决视频监控系统中异常行为检测精度不高,计算方法复杂的问题,提出一种基于监控视频的Farneback光流算法的人体异常行为检测方法。该方法选用密集光流算法提取运动区域内的光流信息,采用直方图方向熵和幅值熵的乘积计算出用于表示行为混乱程度的W值,以此来判断是否发生异常行为,且W值越大,说明当前运动越混乱,发生异常行为的可能性越大。实验结果表明,所提算法可以有效地检测指定监控区域内的人体异常行为,检测率可达到92.33%,该方法简单实用,为监控视频的智能分析提供技术支持。 For the purpose of settling a matter that the poor detection of degrees of abnormal action in video monitoring system and the intricate computing way,a detection approach of human abnormal action based on the Farneback optical flow arithmetic of surveillance video is come up with.The means uses the dense optical flow arithmetic to extract the optical flow information of the moving area,and the product of the histogram directional entropy and amplitude entropy is used to calculate the W value used to represent the degree of action disorder,so as to judge whether abnormal behavior occurs.Moreover,the larger the W value is,the extent of chaos in the current motion is to serve as a catalyst for the probability of abnormal action.Experiment consequences indicate that the mentioned arithmetic can validly detect abnormal human action in the specified monitoring region,and the detection rate can attain 92.33%.The method in this paper is simple and practical,and provides technical support for intelligent analysis of surveillance video.
作者 郑萌萌 钱慧芳 周璇 Zheng Mengmeng;Qian Huifang;Zhou Xuan(Xi'an Polytechnic University,Xi’an 710048,China)
机构地区 西安工程大学
出处 《国外电子测量技术》 北大核心 2021年第3期16-22,共7页 Foreign Electronic Measurement Technology
基金 陕西省科技计划项目(2019GY-036)资助。
关键词 异常行为检测 密集光流 直方图 智能分析 abnormal action detection dense optical flow histogram entropy intelligent analysis
  • 相关文献

参考文献18

二级参考文献158

  • 1任江涛,施潇潇,孙婧昊,黄焕宇,印鉴.一种改进的基于特征赋权的K均值聚类算法[J].计算机科学,2006,33(7):186-187. 被引量:10
  • 2孙长亮,何峻,肖怀铁.基于ROC曲线的目标识别性能评估方法[J].雷达科学与技术,2007,5(1):17-21. 被引量:17
  • 3POPPE R. Vision-based human motion analysis: an overview [J]. Computer Vision and Image Understanding, 2007, 104(2): 4 -18.
  • 4MITRA S, ACHARYA T. Gesture recognition: a survey [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3): 311- 324.
  • 5MECOCCI A, PANNOZZO M. A completely autonomous system that learns anomalous movements in advanced videosurveillance applications [C] /// 1EEE International Conference on Image Processing. London: IEEE, 2005:II-586 - 589.
  • 6CALDERARA S, CUCCHIARA R, PRATI A. Detection of abnormal behaviors using a mixture of Von Mises distributions [C]//IEEE Conference on Advanced Video and Signal Based Surveillanee. London: IEEE, 2007: 141- 146.
  • 7BOUTTEFROY P I. M, BOUZERDOUM A, PHUNG S L, et al. Abnormal behavior detection using a multi-modal stochastic learning approach [C]// International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Sydney: IEEE, 2008: 121- 126.
  • 8TEHRANI M A, KLEIHORST R, MEIJER P, et al. Abnormal motion detection in a real time smart camera systern [C]//3rd ACM/IEEE International Conference on Distributed Smart Cameras. Como: IEEE, 2009: 1- 7.
  • 9DATTA A, SHAH M, I.()B() N D V. Person on-per son violence detection in video data [C] // Proceedings of the 16th International Conference on Pattern Recognition. Quebec City: IEEE, 2002:433-438.
  • 10CHEN Yu-feng, LIANG Guo yuan, LEE Ka-keung, el al. Abnormal behavior detection by muhi-SVM-based Baycsian network [C]// International Conference on Information Acquisition. Seogwipo-si: IEEE, 2007 : 298 - 303.

共引文献129

同被引文献117

引证文献12

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部