摘要
CaO-containing carbon pellets(CCCP)were successfully prepared from well-mixed coking coal(CC)and calcium oxide(CaO)and roasted at different pyrolysis temperatures.The effects of temperature,pore distribution,and carbon structure on the compressive strength of CCCP was investigated in a pyrolysis furnace(350-750℃).The results showed that as the roasting temperature increased,the compressive strength also increased and furthermore,structural defects and imperfections in the carbon crystallites were gradually eliminated to form more organized char structures,thus forming high-ordered CC.Notably,the CCCP preheated at 750℃exhibited the highest compressive strength.A positive relationship between the compressive strength and pore-size homogeneity was established.A linear relationship between the com-pressive strength of the CCCP and the average stack height of CC was observed.Additionally,a four-stage caking mechanism was developed.
基金
This work was financially supported by the National Key R&D Program of China(No.2018YFB0605900).