摘要
Al-Cu binary alloys are important and interesting industry materials.Up to date,the formation mechanisms of the key strengthening precipitates,namedθ’-phase,in the alloys are still controversial.Here,we report that for non-deformed bulk Al-Cu alloys theθ’-phase actually has its own direct precursors that can form only at elevated aging temperature(>ca.200℃).These high-temperature precursors have the same plate-like morphology as theθ’-phase precipitates but rather different structures.Atomicresolution imaging reveals that they have a tetragonal structure with a=0.405 nm and c=1.213 nm,and an average composition of Al_(5-x)Cu_(1+x)(0≤x<1),being fully coherent with the Al-lattice.This precursor phase may initiate with a composition of Al5 Cu and evolve locally towards Al_(4)Cu_(2)in composition,eventually leading to a consequent structural transformation into theθ’-phase(Al4 Cu2=Al2 Cu).There are evidences that because of their genetic links in structure,such a high-temperature precursor may transform to theθ’-phase without having to change their morphology and interface structure.Our study reveals a well-defined and previously hidden precipitation scenario for theθ’-phase to form in Al-Cu alloys at an elevated aging temperature.
基金
the National Natural Science Foundation of China(Nos.51831004,51801060,51671082,11427806,51471067)
the National Key Research and Development Program of China(No.2016YFB0300801)。