摘要
Significant efforts have been devoted to enhancing the sensitivity and working range of flexible pressure sensors to improve the precise measurement of subtle variations in pressure over a wide detection spectrum. However,achieving sensitivities exceeding 1000 kPa^(-1) while maintaining a pressure working range over 100 kPa is still challenging because of the limited intrinsic properties of soft matrix materials. Here, we report a magnetic field-induced porous elastomer with micropillar arrays(MPAs) as sensing materials and a well-patterned nickel fabric as an electrode. The developed sensor exhibits an ultrahigh sensitivity of 10,268 kPa^(-1)(0.6–170 kPa) with a minimum detection pressure of 0.25 Pa and a fast response time of 3 ms because of the unique structure of the MPAs and the textured morphology of the electrode. The porous elastomer provides an extended working range of up to 500 kPa with long-time durability. The sophisticated sensor system coupled with an integrated wireless recharging system comprising a flexible supercapacitor and inductive coils for transmission achieves excellent performance. Thus, a diverse range of practical applications requiring a low-to-high pressure range sensing can be developed. Our strategy, which combines a microstructured high-performance sensor device with a wireless recharging system, provides a basis for creating next-generation flexible electronics.
为实现在宽感知范围内对微小压力变化的精确测量,提高柔性压力传感器的灵敏度和工作范围显得尤为迫切.然而,由于柔性传感器所使用的软基质材料的固有局限,实现超过100 kPa工作范围同时维持1000 kPa^(-1)以上的灵敏度仍然是一项挑战.本文报道了一种磁诱导的多孔弹性体(PDMS),分别以微柱阵列(MPA)作为传感材料和具有编织结构的导电镍作为电极.由于MPA的独特结构和电极的织构形态,所开发的传感器具有10,268 kPa^(-1)(0.6–170 kPa范围内)的超高灵敏度,高达500 kPa的工作范围,并具有长期耐用性.并实现了最小0.25 Pa的检测压力和3 ms的响应时间.此外,将柔性传感器、柔性超级电容器和感应线圈进行一体化集成,实现了对传感器的无线能量传输,并在低压至高压范围内对传感实际应用能力进行了测试.本项研究工作将具有微结构的高性能传感器与无线充电系统结合在一起,为开发下一代柔性电子产品提供了一种新颖的方法.
作者
Libo Gao
Ying Han
James Utama Surjadi
Ke Cao
Wenzhao Zhou
Hongcheng Xu
Xinkang Hu
Mingzhi Wang
Kangqi Fan
Yuejiao Wang
Weidong Wang
Horacio D.Espinosa
高立波;韩英;James Utama Surjadi;曹可;周文钊;徐洪成;胡新康;王明智;樊康旗;王月皎;王卫东;Horacio DEspinosa(School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China;CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing,Shenzhen 518057,China;Nano-Manufacturing Laboratory(NML),Shenzhen Research Institute of City University of Hong Kong,Shenzhen 518057,China;Department of Mechanical Engineering,City University of Hong Kong,Kowloon 999077,Hong Kong SAR,China;Department of Mechanical Engineering,Northwestern University,Evanston,Illinois 60208,USA;Theoretical and Applied Mechanics Program,Northwestern University,Evanston,Illinois 60208,USA)
基金
supported by the National Natural Science Foundation of China (61904141)
the Funding of the Natural Science Foundation of Shaanxi Province (2020JQ-295)
China Postdoctoral Science Foundation (2020M673340)
the Key Research and Development Program of Shaanxi (2020GY-252)
the National Key Laboratory of Science and Technology on Vacuum Technology and Physics (HTKJ2019KL510007)。