摘要
评定空间直线度时,仅由复杂的几何判定准则来裁定算法是否构造或找到了测点集的最小区域。针对这一问题,研究基于矩阵的空间直线度一般化判别方法。分析空间直线测点集与最小区域边界的相对方位、相对距离等关系,建立空间直线度最小区域模型;分析最小区域的基本数理逻辑形式及其便于求解的推论;利用矩阵性质将这些逻辑问题转化为等效的一般化判别问题。通过实例验证了所提出的判别方法的可行性。
When evaluating spatial straightness,there are only complex geometric criteria to determine whether the algorithm has constructed or found the minimum area of the measurement point set.In order to solve this problem,the general discrimination method for the spatial straightness based on matrix was studied.Based on the analysis of the relative orientation and relative distance between the spatial linear measurement points set and the boundary of the minimum area,the model of the minimum area of the spatial straightness was established;the basic mathematical logic form of the minimum area and its inference which was easier to solve were analyzed;these logic problems were transformed into equivalent general discriminant method by using the matrix properties.The feasibility of the proposed method was verified through an example.
作者
秦玲
黄美发
唐哲敏
刘廷伟
QIN Ling;HUANG Meifa;TANG Zhemin;LIU Tingwei(Institute of Information Technology,Guilin University of Electronic Technology,Guilin Guangxi 541004,China;School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处
《机床与液压》
北大核心
2021年第12期19-22,86,共5页
Machine Tool & Hydraulics
基金
国家自然科学基金地区科学基金项目(51765012)。
关键词
一般化判别准则
空间直线度
最小区域
几何误差评定
General discrimination criteria
Spatial straightness
Minimum zone
Geometric error evaluation