期刊文献+

一类含参半正二阶离散周期边值问题正解的存在性

Existence of Positive Solutions for a Class ofSemi-positone Second-Order Discrete PeriodicBoundary Value Problem with Parameter
下载PDF
导出
摘要 用Guo-Krasnoselskii不动点定理给出半正二阶离散周期边值问题Δ^(2)u(t-1)+a(t)u(t)=λf(t,u(t)),t∈[1,T]_(Z),u(0)=u(T),Δu(0)=Δu(T{)正解的存在性和多解性结果,其中λ>0为参数,[1,T]_(Z)={1,2,…,T},f:[1,T]_(Z)×[0,∞)→R连续且存在常数D>0,使得f(t,u)≥-D,(t,u)∈[1,T]_(Z)×[0,∞),a:[1,T]_(Z)→(0,∞),0<a(t)<4sin^(2)(π/2T). By using the fixed-point theorem of Guo-Krasnoselskii,we give the existence and multiplicity of positive solution for semi-positone second-order discrete periodic boundary value problem{Δ^(2)u(t-1)+a(t)u(t)=λf(t,u(t)),t∈[1,T]_(Z),u(0)=u(T),Δu(0)=Δu(T),whereλ>0 is the parameter,[1,T]_(Z)={1,2,…,T},f:[1,T]_(Z)×[0,∞)→R is continuous and there exists constant D>0,such that f(t,u)≥-D,(t,u)∈[1,T]_(Z)×[0,∞),a:[1,T]_(Z)→(0,∞)and 0<a(t)<4 sin^(2)(π/2T).
作者 王瑞 路艳琼 WANG Rui;LU Yanqiong(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2021年第4期725-730,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金青年科学基金(批准号:11801453,11901464).
关键词 周期边值问题 半正问题 正解 不动点定理 periodic boundary value problem semi-positone problem positive solution fixed point theorem
  • 相关文献

参考文献4

二级参考文献21

  • 1孙经先,刘衍胜.MULTIPLE POSITIVE SOLUTIONS OF SINGULAR THIRD-ORDER PERIODIC BOUNDARY VALUE PROBLEM[J].Acta Mathematica Scientia,2005,25(1):81-88. 被引量:21
  • 2张晓燕,孙经先.一维奇异p-Laplacian方程多解的存在性[J].数学物理学报(A辑),2006,26(1):143-149. 被引量:17
  • 3王丽颖,张丽颖,李晓月.二阶离散周期边值问题的正解[J].东北师大学报(自然科学版),2007,39(2):11-15. 被引量:4
  • 4MA Ru-yun, Raffoul Y. Positive Solutions of Three-Point Nonlinear Discrete Second Order Boundary Value Problem [J].Journal of Difference Equations and Applications, 2004, 2(10) : 129 - 138.
  • 5AGARWAL R P, O'REGAN D. Nonpositone Discrete Boundary Value Problems[J]. Nonlinear Analysis, 2000, 39(2) : 207 - 215.
  • 6GYORI I, LADAS G. Oscillation Theory of Delay Difference Equations with Applications [C].//Oxford Mathematical Monographs. Oxford: Oxford University Press, 1991.
  • 7AGRWAL R P, O'REAGN D. A Coupled System of Defference Equations [J]. Appl Math Comp, 2000, 114(1): 39 -49.
  • 8WONG P J Y, AGARWAL R P. On the Existence of Positive Solutions of Singular Boundary Value Problems for High Order Difference Equations[J]. Nonlinear Anal T M A, 1997, 28(2) : 277 - 287.
  • 9KRASNOSELSKII M A. Positive Solutions of Operator Equations[J]. SIAM, 1966, 8(1): 122 - 123.
  • 10MA Ru-yun. Existence of Positive Solutions for Superlinear Semipositone m-Point Boundary Value Problems[J]. Proceedings of the Edinburgh Mathematical Society, 2003, 46(02): 279- 292.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部