摘要
用Guo-Krasnoselskii不动点定理给出半正二阶离散周期边值问题Δ^(2)u(t-1)+a(t)u(t)=λf(t,u(t)),t∈[1,T]_(Z),u(0)=u(T),Δu(0)=Δu(T{)正解的存在性和多解性结果,其中λ>0为参数,[1,T]_(Z)={1,2,…,T},f:[1,T]_(Z)×[0,∞)→R连续且存在常数D>0,使得f(t,u)≥-D,(t,u)∈[1,T]_(Z)×[0,∞),a:[1,T]_(Z)→(0,∞),0<a(t)<4sin^(2)(π/2T).
By using the fixed-point theorem of Guo-Krasnoselskii,we give the existence and multiplicity of positive solution for semi-positone second-order discrete periodic boundary value problem{Δ^(2)u(t-1)+a(t)u(t)=λf(t,u(t)),t∈[1,T]_(Z),u(0)=u(T),Δu(0)=Δu(T),whereλ>0 is the parameter,[1,T]_(Z)={1,2,…,T},f:[1,T]_(Z)×[0,∞)→R is continuous and there exists constant D>0,such that f(t,u)≥-D,(t,u)∈[1,T]_(Z)×[0,∞),a:[1,T]_(Z)→(0,∞)and 0<a(t)<4 sin^(2)(π/2T).
作者
王瑞
路艳琼
WANG Rui;LU Yanqiong(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2021年第4期725-730,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金青年科学基金(批准号:11801453,11901464).
关键词
周期边值问题
半正问题
正解
不动点定理
periodic boundary value problem
semi-positone problem
positive solution
fixed point theorem