期刊文献+

基于Z变换的C-R逆算子分析及其应用研究 被引量:1

Analysis and application of inverse C-R transform based on Z transform
原文传递
导出
摘要 本文首先基于拉式变换以及Z变换,对C-R系统进行分析,得到了相应的时域连续解与离散解,考虑到指数运算在现场可编程门阵列(Field-Programmable Gate Array,FPGA)中难以实现,结合泰勒级数展开了指数项,得到了改进的离散解,然后结合数值解对这三个离散解进行了仿真对比;结合Z变换解,对其做相应的处理得到C-R逆系统的时域数字解,并且给出了基于FPGA的C-R逆算子的电路系统结构实现框图。在构建的C-R逆算子算法基础上,针对单指数脉冲信号通过C-R系统后产生的反冲拖尾现象进行了初步应用研究,得到了无反冲的更窄的脉冲信号,实现了数字极零相消的功能。最后通过模拟实验发现了数字基线漂移的问题,分析了原因,并提出了改进方法,得到改进的C-R逆算子算法,并通过模拟实验验证了可行性。 [Background]In nuclear radiation measurement,nuclear pulse signal can only process the analog circuit system in sequence,generally,signal distortion appeared.[Purpose]This paper proposed inverse C-R algorithm aims at obtaining narrow nuclear pulse signal,implementing baseline elimination,and realizing better precision and high-resolution energy spectrum measurement under high counting rate.[Method]This paper makes detail study in C-R circuit system with Laplace transform and Z-transform,and corresponding continuous and discrete solutions to step signal and minus exponential signal of C-R circuit are presented,besides,considering the difficulty in algorithm deployment in FPGA(Field-Programmable Gate Array)with exponential parameter,Taylor expansion is applied to simplify the discrete response,which an modified discrete solution is also presented,besides,numerical solution of C-R system is also considered,the comparison of the three discrete solutions are simulated with MATLAB.And with suitable transform of C-R numerical solution,inverse C-R numerical solution is obtained,as appropriate choice of parameter,inverse C-R numerical solution can not only eliminate the undershoot in nuclear signal,but also realize the narrowing of the signal.[Results&Conclusions]Simulation results presents that the three methods are in consistence in nuclear signal processing,and with suitable parameter setting,inverse C-R system can eliminate the undershoot and narrow the signal,and with accurate baseline estimation,baseline restoration can be realized with modified inverse C-R baseline eliminating algorithm.
作者 金幼贤 周建斌 马英杰 岳爱忠 洪旭 刘易 王敏 JIN Youxian;ZHOU Jianbin;MA Yingjie;YUE Aizhong;HONG Xu;LIU Yi;WANG Min(College of Nuclear Technology and Automation Engineer,Chengdu University of Technology,Chengdu 610059,China;China Petroleum Logging Co.,Ltd,Xi'an 710032,China;Sichuan Xinxianda Measurement and Control Technology Co.,Ltd,Chengdu 610052,China)
出处 《核技术》 CAS CSCD 北大核心 2021年第7期39-45,共7页 Nuclear Techniques
基金 国家自然科学基金-面上项目(No.11975060、No.12075038、No.12005026) 四川省科技计划(No.2021JDRC0028)资助。
关键词 Z变换 C-R逆算子 时域数值分析 基线恢复 Z transform Inverse C-R transform Time domain numerical analysis Baseline restoration
  • 相关文献

参考文献4

二级参考文献23

  • 1Wang J J, Fan T M, Qian Y G. Nuclear electronics. Beijing: Atomic Energy Press, 1983 (in Chinese).
  • 2Wang Z Y, Lou B Q, Zhu J J, et al. Principle of Nuclear Electronics. Beijing: Atomic Energy Press, 1989 (in Chinese).
  • 3ttu X J. Circuit Analysis. Beijing: Higher Education Press, 2001 (in Chinese).
  • 4Wang B X. Signal and System. Harbin: Harbin Institute of Technology Press, 2003 (in Chinese).
  • 5Jordanov V T, Knoll G F. Nucl Instrum Methods Phys Res Sec A, 1994, 345: 337-345.
  • 6Jordanov V T, Knoll G F, Huber A C. Nucl Instrum Methods Phys Res See A, 1994, 353: 261-264.
  • 7Jordanov V T, Knoll G F. IEEE Transact Nucl sci, 1995, 42: 683-687.
  • 8Jordanov V T, Pantazis J A, Huber A C. Nucl Instrum Methods Phys Res See A, 1996, 380: 353-357.
  • 9Jordanov V T. Nucl Instrum Methods Phys Res Sec A 2003, 505: 347-351.
  • 10Chen S G, Ji S Y, Liu W S, et al. Acta Phys Sinica, 2008, 57:2882-2887 (in Chinese).

共引文献46

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部