期刊文献+

单宁酸协同改性超高分子量聚乙烯纤维与环氧树脂复合材料 被引量:5

Tannic Acid Synergistically Modified Ultra-High Molecular Weight Polyethylene Fiber and Epoxy Resin Composite
下载PDF
导出
摘要 将单宁酸共混改性的环氧树脂与单宁酸-金属Na~+络合改性超高分子量聚乙烯(UHMWPE)纤维进行复合,从而改善了UHMWPE纤维与环氧树脂的界面强度,提高了纤维增强复合材料的整体性能。改性后纤维表面的单宁酸与树脂基体中的单宁酸在界面处形成"桥联"作用。单宁酸共混改性环氧树脂是为了在环氧树脂中引入羟基以增强其力学强度。结果表明,当单宁酸在环氧树脂中的负载量为1%时,树脂基体的拉伸强度、弯曲强度达到最大值,分别为55.41 MPa, 74.24 MPa,与纯环氧树脂相比分别提高了67.5%和63.5%。同时界面剪切强度达到2.22 MPa,与原复合材料相比提高了64.8%。纵向纤维束使环氧树脂复合材料的拉伸强度增加到89.52 MPa,弯曲强度达到118.82 MPa,与纯复合材料相比,分别提高了120.2%,47.3%。通过扫描电镜图分析可以得出,纤维增强复合材料的破坏方式为黏接剂破坏。 Compounding epoxy resins blended by tannic acid with ultra high molecular weight polyethylene(UHMWPE)fibers were complex modified by tannic acid-metal Na~+,thereby improving the interface strength between UHMWPE fibers and epoxy resin,and enhancing the overall performance of fiber reinforced composite materials.The tannic acid on the surface of the modified fibers and the tannic acid in the resin matrix form a"bridge"effect at the interface.Tannin blended epoxy resin is designed to introduce hydroxyl groups in epoxy resin to enhance the mechanical strength of epoxy resin.The results show that when the loading of tannic acid in epoxy resin is 1%,the tensile and flexural strength of the resin matrix reach the maximum,which are 55.41 MPa and 74.24 MPa,compared with pure epoxy resin,improved 67.5%and 63.5%,respectively.At the same time,the interface shear strength reaches 2.22 MPa,which is 64.8%higher than that of the original composite.The longitudinal fiber bundle reinforcement increases the tensile strength of the epoxy resin composite to 89.52 MPa and the bending strength of 118.82 MPa,which are 120.2%and 47.3%higher than those of the pure composite,respectively.According to the SEM analysis,it can be concluded that the failure mode of fiber-reinforced composite materials is adhesive failure.
作者 王世成 高佳鑫 冯霞 Shicheng Wang;Jiaxin Gao;Xia Feng(School of Material Science and Engineering,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2021年第4期92-98,共7页 Polymer Materials Science & Engineering
基金 天津市科学技术计划(17YFZCSF01230,17PTSYJC00040,18JCYBJC18100,18PTSYJC00180) 中国教育部大学创新研究团队计划(IRT-17R80) 天津大学创新研究团队(TD13-5044) 天津工业大学纤维研究基金会(TGF-21-A8)。
关键词 超高分子量聚乙烯纤维 单宁酸 协同改性 界面强度 UHMWPE fiber tannic acid synergistic modification interfacial strength
  • 相关文献

参考文献4

二级参考文献32

  • 1王方,蒋斌波,王靖岱,阳永荣.结构化纳米Ziegler-Natta催化剂制备超高分子量聚乙烯[J].高分子学报,2013,23(8):985-992. 被引量:4
  • 2黄玉松,陈跃如,邵军,李明利,王运华.超高分子量聚乙烯纤维复合材料的研究进展[J].工程塑料应用,2005,33(11):69-73. 被引量:19
  • 3吴涛.电晕法处理超高相对分子质量聚乙烯纤维[J].高科技纤维与应用,2005,30(6):14-16. 被引量:14
  • 4Lemstra,P.J. ,Kirschbaum,R. , Ohta, T., Yasuda, H. Developments in Oriented Polumers - 2. Ward, I. M. ( Ed. ). Elseviers Applied Science London, 1987 : 39 - 79.
  • 5SMem,D.R.著,高绪珊,吴大诚,等译.聚合物纤维结构的形成(第一版)[M].北京:化学工业出版社,2004:146-149.
  • 6Tashiro. K. , Kobayashi, M. , Tadakoro, H. Macromolecules, 1978:914.
  • 7Odajima,A. ,Madea,T. J. Polym. Sci. Part C, 1966,34:55.
  • 8Meihuizen, et al. Process for continuous preparation of fibrous polymer crystals[ P]. United States Patent US 4,137,394 January 30, 1979.
  • 9Kavesh, et al. High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore [ P ]. United States Patent US 4,413,1t0 November 1, 1983.
  • 10Motooka Masanori, Mantoku Hitoshi, Ohno Takao, et al. Process for producing stretched filaments of ultrahigh - molecular - weight polyethylene[ P]. European Patent EP0115192 August 8, 1984.

共引文献41

同被引文献35

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部