期刊文献+

石墨烯复合微粒喷射成型数值模拟分析与实验研究

Simulation and experiment of graphene composite particle spay forming
原文传递
导出
摘要 石墨烯粉末比表面积大、极易团聚,难以控制其在基体中的分散效果,本文利用喷射成形方法控制石墨烯复合微粒在基体中分散行为,数值模拟分析了不同的喷射成形工艺参数对其分散范围和分散均匀性的影响,并进行实验验证。结果表明,石墨烯复合微粒的分散范围随着喷射打印高度的增大而增大;当直射流气压为0.2 MPa时,适当增大旋流气压,喷嘴出口处的气流速度分布相对均匀,同时石墨烯复合微粒运动轨迹的曲率也随着增大,这有助于改善石墨烯复合微粒的分散效果。喷射成型实验结果表明,当直射流气压为0.2 MPa、旋流气压为0.4 MPa、喷射打印高度为3 mm时,石墨烯复合微粒获能得到了较佳的分散效果,其分散标准差为0.3938。 Because of large surface area and easy agglomeration,it is difficult to control graphene powder’s dispersion effect in matrix.This article attempts to control the dispersion behavior of graphene composite particles in matrix by the spray forming.And numerical simulation and experiment are used to analysize the dispersion effect of different spray forming process parameters.The results show that the dispersion range of graphene composite particles will increase as the spray height increases.When the carrier gas pressure is 0.2 MPa,the cyclone pressure is appropriately increased,the air velocity distribution at the nozzle outlet is relatively uniform.At the same time,the curvature of the overall motion trajectory of the graphene composite particles gradually increases.When the straight gas pressure is 0.2 MPa,the cyclone pressure is 0.4 MPa,and the spray height is 3 mm,the results of spay forming experiment show that graphene composite particles can achieve a better dispersion effect,and the dispersion standard deviation is 0.3938.
作者 吴海华 高纪强 范雪婷 李亚峰 叶永盛 Wu Hai-hua;Gao Ji-qiang;Fan Xue-ting;Li Ya-feng;Ye Yong-sheng(Yichang Key Laboratory of Graphite Additive Manufacturing,China Three Gorges University,Hubei Yichang 443002,China)
出处 《炭素技术》 CAS 北大核心 2021年第3期8-14,共7页 Carbon Techniques
基金 国家自然科学基金资助项目(51575313) 湖北省技术创新专项重大项目(2019AAA164)。
关键词 石墨烯复合微粒 喷射成型 数值模拟 分散效果 Graphene composite particle spay forming simulation dispersion effect
  • 相关文献

参考文献2

二级参考文献42

  • 1李文亚,李长久,王豫跃,杨冠军.冷喷涂Cu粒子参量对其碰撞变形行为的影响[J].金属学报,2005,41(3):282-286. 被引量:57
  • 2Z. You, K. Hirao, K. Watari, Y. Yamauchi, S. Kanzaki, J. Eur. Ceram. Soc. 24 (2004) 265-270.
  • 3D.M. Liu, B.W. Lin, Ceram. Int. 22 (1996) 407-414.
  • 4D. Chen, M.E. Sixta, X.F. Zhang, LC.D. Jonghe, R.O. Ritchie, Acta Mater. 48 (2000) 4599-4608.
  • 5R. Yuan, J.J. Kruzic, X.F. Zhang, J.L.C. De, R.O. Ritchie, Acta Mater. 51 (2003) 6477-6491.
  • 6A. Sommers, Q. Wang, X. Han, C.T. Joen, Y. Park, A. Jacobi, Appl. Therm. Eng. 30(2010) 1277-1291.
  • 7A. Lara, A.L. Ortiz, A. Munoz, A. Dommguez-Rodriguez, Ceram. Int. 38 (2012) 45-53.
  • 8G.A. Slack, J. Appl. Phys. 35 (1964) 3460-3466.
  • 9R.S. Storm, W.D.G. Boecker, C.H. Mcmurtry, M. Srinivasan, ASME Beijing International Gas Turbine Symposium & Exposition, 1985.
  • 10K. Biswas, G. Rixecker, F. Aldinger, Mater. Sci. Eng, A 374 (2004) 56-63.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部