期刊文献+

基于双向编码表示预训练模型的舆情文本解析分类

下载PDF
导出
摘要 随着人工智能和大数据的不断发展,网络数据呈现爆炸式的增长,日益增长的庞大数据量给网络舆情监测分析带来了挑战,急需一种应对海量数据的文本分类算法来自动识别和分类舆情信息。提出一种基于双向编码表示(BERT,Bidirectional Encoder Representations from Transformers)预训练模型的舆情文本解析分类方法。首先将文本输入到词典编码器中;随后通过多层转换器编码将输入特征映射成为一个上下文关联的特征向量;最后为了捕获局部信息,使用卷积神经网络进一步编码并将编码后的信息输入到分类器预测舆情文本属性。
出处 《科技与创新》 2021年第13期118-120,123,共4页 Science and Technology & Innovation
基金 中国电科新一代人工智能专项行动计划项目(编号:AI20191125008)资助。
  • 相关文献

参考文献1

二级参考文献52

  • 1Mayer-Sch?nberger V, Cukier K. Big Data: A Revolution That Will Transform How We Live, Work, and Think. Boston: Eamon Dolan/Houghton Mifflin Harcourt, 2013.
  • 2Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond: Microsoft Research, 2009.
  • 3Bryant R E. Data-intensive scalable computing for scientific applications. Comput Sci Engin, 2011, 13: 25-33.
  • 4周志华. 机器学习与数据挖掘. 中国计算机学会通讯, 2007, 3: 35-44.
  • 5Zhou Z H, Chawla N V, Jin Y, et al. Big data opportunities and challenges: Discussions from data analytics perspectives. IEEE Comput Intell Mag, 2014, 9: 62-74.
  • 6Jordan M. Message from the president: The era of big data. ISBA Bull, 2011, 18: 1-3.
  • 7Kleiner A, Talwalkar A, Sarkar P, et al. The big data bootstrap. In: Proceedings of the 29th International Conference on Machine Learning (ICML), Edinburgh, 2012, 1759-1766.
  • 8Shalev-Shwartz S, Zhang T. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. In: Proceedings of the 31st International Conference on Machine Learning (ICML), Beijing, 2014, 64-72.
  • 9Gonzalez J E, Low Y, Gu H, et al. PowerGraph: Distributed graph-parallel computation on natural graphs. In: Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Hollywood, 2012, 17-30.
  • 10Gao W, Jin R, Zhu S, et al. One-pass AUC optimization. In: Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta, 2013, 906-914.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部