期刊文献+

风功率异常数据检测方法对比研究 被引量:18

Comparative study on detection methods of wind power abnormal data
下载PDF
导出
摘要 风电机组风功率预测和功率曲线建模等工作的开展依赖于历史运行数据。然而,历史数据中积累了大量的异常数据,导致上述工作难以有效开展。国内外学者已经提出了多种异常数据检测方法,然而对不同方法的优缺点与适用场合还缺少整体认识。为此,本文对基于密度的聚类算法、局部离群因子算法、Thompson-tau四分位法和孤立森林四种常用的风功率异常值检测方法进行了对比研究。为评价不同检测方法,提出了基于标准功率曲线的评价指标。实验结果表明,孤立森林算法相比其他三种方法具有更高的精度,能应对不同分布的异常数据,且清洗时间较短。 Wind power prediction and power curve modeling of wind turbines rely on historical operating data.How-ever,a large amount of abnormal data accumulated in historical data makes it difficult to carry out the above-men-tioned work effectively.Scholars at home and abroad have proposed a variety of abnormal data detection methods,but there is still a lack of overall understanding of the advantages and disadvantages of different methods and their applicable occasions.To this end,this paper compares four common wind power outlier detection methods,inclu-ding density-based clustering algorithm,local outlier factor algorithm,Thompson-tau quartile method and isolated forest.In order to evaluate different detection methods,an evaluation index based on power curve modeling error is proposed.The experimental results show that the isolated forest algorithm has higher accuracy than the other three methods,can deal with differently distributed abnormal data,and has a shorter cleaning time.
作者 封焯文 朱世平 赵志华 孙铭仁 董密 宋冬然 FENG Zhuo-wen;ZHU Shi-ping;ZHAO Zhi-hua;SUN Ming-ren;DONG Mi;SONG Dong-ran(Hunan Electric Power Design Institute Co.,Ltd.CEEC,Changsha 410007,China;School of Automation,Central South University,Changsha 410083,China)
出处 《电工电能新技术》 CSCD 北大核心 2021年第7期55-61,共7页 Advanced Technology of Electrical Engineering and Energy
基金 湖南省战略性新兴产业-科技攻关与重大科技成果转化项目(2018GK4002)。
关键词 风功率数据 异常值特点 数据清洗 孤立森林 wind power data outlier characteristics data cleaning isolated forest
  • 相关文献

参考文献11

二级参考文献108

  • 1曹潇.风玫瑰图在电网气象信息系统中的应用研究[J].风能,2010(12):44-45. 被引量:2
  • 2韦姝,魏海坤,朱婷婷,张驰.考虑风速分布与日非平稳性的风速数据预处理方法研究[J].电网与清洁能源,2015,31(3):93-98. 被引量:3
  • 3李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1246
  • 4Bialasiewicz J T, Muljadi E. The wind farm aggregation impact on power quality [ A]. Proceedings of the 32nd Annual Conference of IEEE Industry Electronic Society [C]. Paris, France, 2006. 4195-4200.
  • 5Hida Y, Miyaguchi Y, Yokoyama R, et al. A study of optimal capacity of BESS to mitigate unstable of solar power generation [ A]. Modern Electric Power Systems [C], Tokyo, Japan, 2010. 1-5.
  • 6宇航,张真卿,苑田芬,等 .风电功率波动平抑效能与储能容量之间关系的分析研究 [A].中国电机工程学会年会 [C].天津,2009.1-4.
  • 7Teleke S, Baran M E, Bhattacharya S, et al. Optimal control of battery energy storage for wind farm dispatc- hing [ J]. IEEE Transactions on Energy Conversion, 2010, 25(3) : 787-794.
  • 8Tanbe T, Sato T, Tanikawa R, et al. Generation sched- uling for wind power generation by storage battery systemand meteorological forecast [ A]. Power and Energy So- ciety General Meeting - Conversion and Delivery of Elec- trical Energy in the 21st Century [ C]. Tokyo, Japan, 2008. 1-7.
  • 9Shinji W, Ryohei O, Hideto N, et al. An investigation on optimal battery capacity in wind power generation sys- tem [A]. Proceedings of JSES/JWEA Joint Conference [C]. Tokyo, Japan, 2004. 341-344.
  • 10Hida Y, Ito Y, Yokoyama R, et al. A study of optimal capacity of PV and battery energy storage system distrib- uted in demand side [ A]. Universities Power Engineer-ing Conference [C]. Tokyo, Japan, 2010. 1-5.

共引文献287

同被引文献250

引证文献18

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部