期刊文献+

Higher Order Triangular Mixed Finite Element Methods for Semilinear Quadratic Optimal Control Problems 被引量:5

原文传递
导出
摘要 In this paper,we investigate a priori error estimates for the quadratic optimal control problems governed by semilinear elliptic partial differential equations using higher order triangular mixed finite element methods.The state and the co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order k(k≥0).A priori error estimates for the mixed finite element approximation of semilinear control problems are obtained.Finally,we present some numerical examples which confirm our theoretical results.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2011年第2期180-196,共17页 高等学校计算数学学报(英文版)
基金 supported by the Foundation for Talent Introduction of Guangdong Provincial Universities and Colleges Pearl River Scholar Funded Scheme(2008) National Science Foundation of China(10971074).
  • 相关文献

同被引文献17

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部