期刊文献+

Convergence Analysis of a Block-by-Block Method for Fractional Differential Equations 被引量:11

原文传递
导出
摘要 The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2012年第2期229-241,共13页 高等学校计算数学学报(英文版)
基金 supported by the State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences and by Hunan Key Laboratory for Computation and Simulation in Science and Engineering,by National Natural Science Foundation of China(Grant Nos.60931002,11001072 and 11026154) partially by the Spanish Ministry of Science and Innovation under Grant AYA2009-14212-C05-05.
  • 相关文献

参考文献1

二级参考文献17

  • 1Metzler R and Klafter J 2000 Phys. Rep. 339 1.
  • 2Metzler R, Glockle W G and Nonnenmacher T F 1994 Physica A 211 13.
  • 3Giona M and Roman H E 1992 Physica A 185 87.
  • 4Giona M and Roman H E 1992 J. Phys. Math. Gen. 25 2093.
  • 5Roman H E and Giona M J 1992 Phys. Math. Gen. 25 2107.
  • 6Meeshaert M M, Benson D A and Baumer B 1998 Phys. Rev. E 59 5026.
  • 7Benson D A, Wheatcraft S W and Meeshaert M M 2000 Water Resour. Res. 36 1413.
  • 8amko S G, Kilbss A A and M&ichev O I 1993 Fractional Integrals and Derivatives, Theory and Applications (Amsterdam: Gordon and Breach).
  • 9Gorenflo R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Chem. Phys. 284 521.
  • 10Gorenflo R, Mainardi F, Moretti D, Pagnini G and Paradisi P 2002 Physica A 305 106.

共引文献25

同被引文献17

  • 1Diethelm K. The Analysis of Fractional Differential Equations[M]. Berlin:Springer, 2010.
  • 2Benson D A,Wheatcraft S W, Meerschaert M M. Application of a fractional advection dispersion equation[J]. Water Resources Research 2000,36(6) : 1403 - 1412.
  • 3Magin R. Fractional calculus in bioengineering[M]. New York: Begell House,2006.
  • 4Podlubny I. Fractional differential equations[M]. San Diego : Academic Press, 1999.
  • 5Yang Q,Turner I,Liu F W,et al. Novel numerical methods for solving the time space fractional diffusion equation in two dimensions[J].SIAM Journal on Scientific Computing,2011,33(3) :1159 - 1180.
  • 6Scherer R,Kalla S L,Boyadjiev L, et al. Numerical treatment of fractional heat equations[J].Applied Numerical Mathematics, 2008,58 1212 - 1223.
  • 7Meerschaert M M,Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations[J].Journal of Computa-tional and Applied Mathematics, 2004,172:65 -77.
  • 8Wang K,Wang H. A fast characteristic finite difference method for fractional advection-diffusion equation[J]. Advances In Water Re- sources, 2011,34:810 - 816.
  • 9Huang J F,Tang Y F, Vazquez L, et al. Two finite difference schemes for time fractional diffusion-wave equation[J]. Numerical Algo- rithms, 2013,64 .. 707 - 720.
  • 10Kumar P,Agrawal O P. An approximate method for numerical solution of fractional differential equations[J].Singal Process, 2006, 86: 2602 -2610.

引证文献11

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部