期刊文献+

Superconvergence and L^(∞)-Error Estimates of the Lowest Order Mixed Methods for Distributed Optimal Control Problems Governed by Semilinear Elliptic Equations 被引量:1

原文传递
导出
摘要 In this paper, we investigate the superconvergence property and the L∞-errorestimates of mixed finite element methods for a semilinear elliptic control problem. Thestate and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We derive some superconvergence results for the control variable. Moreover, we derive L^(∞)-error estimates both for the control variable and the state variables. Finally, anumerical example is given to demonstrate the theoretical results.
作者 Tianliang Hou
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2013年第3期479-498,共20页 高等学校计算数学学报(英文版)
  • 相关文献

参考文献1

二级参考文献1

共引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部