期刊文献+

基于改进坐标转换的人体运动轨迹识别方法 被引量:3

Research on Human Motion Track Recognition Method Based on Improved Coordinate Transformation
下载PDF
导出
摘要 为了解决当前人体运动识别方法受到复杂背景、可变光照及视角变化的影响,无法准确识别人体运动轨迹的问题,通过特征匹配研究人体运动轨迹识别问题。通过背景提取与差分二级化对人体运动区域进行分割,在此基础上,把人体运动空间描述转换至人体运动关节空间坐标系。通过归一化位移向量序列标识关节活动幅度轨迹,将Fisher向量作为特征,为人体运动轨迹识别提供依据。关节活动幅度轨迹识别选用DTW(Dynamic Time Warping,动态时间归整)方法,获取参考模板与测试模板间的最小累积失真量,将测试模板归类于全部累积失真量最小的一类中,以实现对不同人体运动轨迹长度模板的匹配。结果表明:所提方法识别的人体运动轨迹和实际轨迹基本吻合,受外界环境的影响较小;所提方法与其它方法相比识别率较高,且识别时间较短。可见所提方法识别结果准确,有较强的可行性。 In order to solve the problem that the current human motion recognition method is affected by the complex background,variable light and the change of visual angle,which cannot accurately identify the human motion trajectory,the human motion trajectory recognition is studied by feature matching.Based on the background extraction and differential two-level segmentation of human motion area,the spatial description of human motion is transformed into the spatial coordinate system of human motion joint.The normalized displacement vector sequence is used to identify the trajectory of joint motion amplitude,and the Fisher vector is used as the feature to provide the basis for human motion trajectory recognition.DTW method is used to identify the range of motion of the joint.The minimum accumulated distortion between the reference template and the test template is obtained.The test template is classified into the category with the minimum accumulated distortion,so as to achieve the matching of different human motion track length templates.The results show that the trajectory of human body recognized by the proposed method is basically consistent with the actual trajectory,and is less affected by the external environment.Compared with other methods,the recognition rate of this method is higher,and the recognition time is shorter.It can be seen that the proposed method is accurate and feasible.
作者 于燕山 郭鹏 YU Yanshan;GUO Peng(Sports Department,Xi’an Polytechnic University,Xi’an 710048,China;School of General Education Cangzhou Jiaotang College,Cangzou 061199,China)
出处 《微型电脑应用》 2021年第7期111-115,共5页 Microcomputer Applications
关键词 坐标转换 人体运动 关节活动幅度 轨迹识别 coordinate transformation human motion range of motion of joints trajectory trajectory recognition
  • 相关文献

参考文献16

二级参考文献125

  • 1李瑞峰,曹雏清,王丽.基于深度图像和表观特征的手势识别[J].华中科技大学学报(自然科学版),2011,39(S2):88-91. 被引量:10
  • 2毛雁明,章立亮.基于Kinect深度信息的手势分割与识别[J].系统仿真学报,2015,27(4):830-835. 被引量:10
  • 3张鹏,卢广山,王合龙,田青.基于三步搜索法的特征相关目标跟踪算法[J].电光与控制,2004,11(4):38-40. 被引量:10
  • 4余涛.Kinect应用开发实战:用最自然的方式与机器对话[M].北京:机械工业出版社,2012.
  • 5Sakurai T, Sankai Y. Development of motion instruc- tion system with interactive robot suit HAL [C]//Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics. Guilin, China, 2009 : 1141 - 1147.
  • 6Kawabata T, Satoh H, Sankai Y. Working posture control of robot suit HAL for reducing structural stress [C]//Proceedings of the 2009 IEEE International Con- ference on Robotics and Biomimetics. Guilin, China, 2009 : 2013 - 2018.
  • 7Kawamoto H, Taal S, Niniss H, et al. Voluntary mo- tion support control of robot suit HAL triggered by bio- electrical signal for hemiplegia [ C ]//32nd Annual In- ternational Conference of the IEEE EMBS. Buenos Aires, Argentina, 2010: 462 - 466.
  • 8Pratt J E, Krupp B T, Morse C J, et al. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking [C]//International Confer- ence on Robotics and Automation. New Orleans, USA, 2004 : 2430 - 2435.
  • 9Kazerooni H, Racine J L, Huang Lihua, et al. On the control of the Berkeley lower extremity exoskeleton [C]//International Conference on Robotics and Auto- marion. Barcelona, Spain, 2005 : 4353 - 4360.
  • 10Kazerooni H, Steger R, Huang Lihua. Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX)[J]. The International Journal of Robotics Research, 2006, 25(5/6) : 561 - 573.

共引文献147

同被引文献15

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部