期刊文献+

融合改进Stacking与规则的文本情感分析 被引量:8

Text Emotion Analysis Based on the Integration of Improved Stacking and Rules
下载PDF
导出
摘要 文本情感分析是自然语言处理的重要部分,但现有的文本情感分析方法均有其不足.为了使各个方法进行互补,提出了一种融合改进Stacking与规则的文本情感分析方法 Stacking-I.该方法在Stacking集成算法的基础上进行改进,融合了两种主流的情感分析方法:文本规则方法和机器学习方法.在不同的3组网络评论文本上进行实验,证明该方法在网络评论文本情感分析实验中表现良好且有较高的准确率,其准确率高于传统机器学习方法、其它集成算法以及深度学习方法,最高可达91.700%,并且在不同数据量的基础上,通过大量实验和时间复杂度对比,得到了针对网络文本情感分析最佳的Stacking-I算法配置. Text emotion analysis is a vital part of natural language processing.However,the existing methods of text emotion analysis have their shortcomings.For the sake of combining the benefits of each model,a text emotion analysis method named Stacking-I based on the improved Stacking and text rules is developed.The algorithm is proposed on the basis of Stacking integration algorithm,combining two main emotion analysis methods:text rule method and machine learning method.Experiments were carried out on three different groups of network comment texts,which proved that this method has an excellent performance and a high accuracy rate in emotional analysis of network comment texts.Moreover,the highest accuracy rate reached 91.700% in the experiments,higher than traditional machine learning methods,other integrated algorithms and deep learning methods.By considering the time complexity and based on different datasets,the best algorithm of Stacking-I for emotion analysis of network text is configured after extensive experiments.
作者 宛艳萍 谷佳真 张芳 WAN Yan-ping;GU Jia-zhen;ZHANG Fang(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第7期1389-1395,共7页 Journal of Chinese Computer Systems
关键词 文本情感分析 Stacking算法 情感词典 机器学习 自然语言处理 text sentiment analysis Stacking emotional dictionary machine learning natural language processing
  • 相关文献

参考文献9

二级参考文献87

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3韦艳艳,李陶深.一种基于投票的Stacking方法[J].计算机工程,2006,32(7):199-201. 被引量:4
  • 4徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 5R.Vilalta and Y.Drissi.A perspective view and survey of meta-learning[J].Artificial Intelligence Review,2002,18(2):77-95.
  • 6Saso Dzeroski and Bernard Zenko:Is combining classifiers with stacking better than selecting the best one?[J].Machine Learning.2004,54(3):255-273.
  • 7Rie Ando and Tong Zhang.A framework for learning predictive structures from multiple tasks and unlabeled data[J].Journal of Machine Learning Research,2005,6:1817-1853.
  • 8B.Pang,L.Lee,and S.Vaithyanathan.Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing(EMNLP-02).2002.
  • 9B.Pang and L.Lee.A sentimental education:Sentiment analysis using subjectivity summarization based on minimum cuts[C]//Proceedings of the 42nd Meeting of the Association for Computational Linguistics(ACL-04).2004.
  • 10E.Riloff,S.Patwardhan,and J.Wiebe.Feature subsumption for opinion analysis[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing(EMNLP-06).2006.

共引文献147

同被引文献68

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部