期刊文献+

一类SIR和SIS组合传染病模型行波解的存在性

The Existence of Travelling Wave Solutions in a Type of Combined SIR and SIS Infectious Disease Model
原文传递
导出
摘要 【目的】研究由SIR和SIS组合的三维传染病模型行波解的存在性。【方法】利用Routh-Hurwitz判据,运用Schauder不动点定理构造合适的上下解,讨论该模型中无病平衡点和地方病平衡点在一定条件下的稳定性以及连接两个平衡点的行波解的存在性。【结果】当R_(0)>1时,对任意的c>c^(*),该传染病模型存在连接无病平衡点和地方病平衡点的行波解,且最小波速为c^(*)。【结论】该传染病模型的行波解是存在的。 [Purposes]In order to study the existence of travelling wave solutions in a three-dimensional infectious disease model composed of SIR and SIS.[Methods]The stabilities,under certain conditions,of disease-free equilibrium point and endemic disease equilibrium point in this model are discussed by means of Routh-Hurwitz criterion.Moreover,using Schauder fixed point theorem,the existence of travelling wave solutions connecting those two equilibrium points is investigated via constructing appropriate upperlower solutions.[Findings]When R_(0)>1,for any c>c^(*),there exists travelling wave solution with the minimum wave speed c^(*),which connect the disease-free equilibrium point and endemic equilibrium point in the epidemic model.[Conclusions]The existence of travelling wave solutions in this infectious disease model has been verified.
作者 杨三艳 李庶民 YANG Sanyan;LI Shumin(College of Science,Kunming University of Science and Technology,Kunming 650500,China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2021年第3期84-93,共10页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11561034)。
关键词 行波解 局部渐进稳定 SCHAUDER不动点定理 上下解 最小波速 travelling wave solution locally asymptotic stability Schauder fixed point theorem upper-lower solution minimum wave speed
  • 相关文献

参考文献2

二级参考文献20

  • 1丁玮,韩茂安.具时滞的人口模型的行波解(英文)[J].生物数学学报,2005,20(1):11-16. 被引量:11
  • 2Ye Q X,Li Z Y. Introduction to Reaction-Diffusion Equations[M]. Beijing: science press, 1990.
  • 3王明新.抛物型方程的初边值间题[M].北京;科学出版社,1993.
  • 4Murray J D. Mathematical Biology H Spatial Models and Biomedical Applications[M]. Berlin:Springer-Verlag, 1990.
  • 5Dunbar S.Traveling wave solutions of diffusive Lotka-Volterra equations[J].Journal of Mathematical Biology, 1983, 17: 11-32.
  • 6Dunbar S. Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in R4[J]. Transactions of the American Mathematical Society, 1984, 286: 557-594.
  • 7Dunbar S.Traveling waves in diffusive predator-prey equations: periodic orbits and point-to periodic hete- roclinic orbits[J].SIAM Journal on Applied Mathematics, 1986, 46: 1057-1078.
  • 8Volpert A. Traveling Wave Solutions of Parabolic Systems[M]. New York: American Mathematical Society, 1994.
  • 9Owen, M R, Lewis, M A. How predation can slow, stop or reverse a prey invasion[J].Bulletin of Mathematical Biology , 2001, 63: 655-684.
  • 10Jianhua Huang, Gang Lu, Shigui Ruan. Existence of traveling wave solutions in a diffusive predator-prey model[J]. Journal of Mathematical Biology, 2003, 46: 132-152.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部