摘要
In this paper,the formation mechanism of mesoporous CeO_(2) synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion,as well as the structure-activity relationship between them were studied in depth.The self-assembly process and physicochemical properties of CeO_(2) were characterized by thermogravimetry analysis,powder X-ray diffraction,N2 adsorption/desorption,high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy techniques.Characterization results show that Ce-MOF is completely decomposed into pure mesoporous CeO_(2) when the decomposition temperature is higher than 400℃.At this threshold temperature,CeO_(2)(400) has the largest specific surface area and pore volume of 114 m^(2)/g and 0.152 cm^(3)/g,respectively.CeO_(2)(400) exhibits very high catalytic activity for benzene combustion,which can completely catalyze the degradation of benzene at 260℃.Meanwhile,the mesoporous CeO_(2)(400) supported Pt nanocrystalline catalysts were prepared by high temperature solution-phase reduction method.Pt/CeO_(2)(400)can completely degrade benzene at about 200℃ and represents high durability and good waterresistance for benzene combustion during 100 h of continuous reaction.
基金
Project supported by Zhejiang Public Welfare Technology Research Project(LGG19B070003)
the Foundation of Science and Technology of the Shaoxing City(2018C10019)
the National Natural Science Foundation of China(21577094)。