期刊文献+

水力压裂解析模型裂缝扩展参数敏感性分析 被引量:4

Sensitivity Analysis for Controlling Parameters of Fracture Propagation in Hydrofracturing Based on Analytical Models
原文传递
导出
摘要 水力压裂形成复杂裂缝网络是致密储层油气开采的重要技术,掌握水压裂缝扩展机理是控制压裂行为和优化压裂效果的关键.水压裂缝动态扩展行为涉及储层岩体、注入压裂液、压裂实施工艺等方面,其中水力压裂扩展时间、压裂液流体动力粘度系数、压裂液流体注入流速、储层岩石剪切模量成为决定裂缝扩展长度和裂缝开度的重要因素.本研究采用KGD、PKN两类等高解析模型对主控因素的参数敏感性进行分析,直观、快速、可靠地获得水压裂缝扩展长度、张开度动态演化行为的量化数值.研究发现,压裂持续开展过程中水压裂缝扩展长度呈线性增长、开度逐渐趋于稳定,高流体动力粘度导致裂缝难扩展、形成较大裂缝开度,通过增加压裂液流体注入流速可同时增加裂缝扩展长度和开度,较高的岩石剪切模量将降低水压裂缝的开度.通过对比两类解析模型在不同参数下的水压裂缝扩展结果,分析压裂参数与裂缝扩展的相关性和敏感系数,讨论水力压裂解析模型的裂缝扩展参数敏感性. Hydrofracturing for producing the complex hydraulic fracture network is an important technology for oil and gas exploitation in tight reservoirs. Understanding the mechanisms of propagation of hydraulic fractures is crucial to control the fracturing behaviours and optimize the fracturing effects. The dynamic propagation behaviours of the hydraulic fractures are related to the properties of reservoir rock, the injection of fracturing fluid, and the fracturing implementation technique. The most significant factors that control the length and aperture of the hydraulic fractures are the hydrofracturing propagation duration time, the dynamic viscosity coefficient of the fracturing fluid, the injection flow rate of the fracturing fluid, and the shear modulus of the reservoir rock. This study introduces the KGD and PKN analytical models with uniform fracture height to analyze the sensitivity of the aforementioned parameters in hydrofracturing. The quantitative dynamic evolutionary behaviours of the hydraulic fractures in terms of the length and aperture are directly, quickly and reliably derived. It is found that the length of hydraulic fracture increases linearly and the aperture of hydraulic fracture tends to be stable during the fracturing process. The high dynamic viscosity coefficient of fracturing fluid may hinder the fracture propagation and induce large aperture. As the injection flow rate of the fracturing fluid increases, both the length and aperture of hydraulic fracture increase simultaneously. The high shear modulus of rock will reduce the aperture of the hydraulic fracture. Comparing the results of dynamic propagation of hydraulic fractures under different parameters in two analytical models, the correlation and sensitivity of the fracturing parameters with the fracture length and aperture are analyzed, and the sensitivity of the controlling parameters of fracture propagation in hydrofracturing are subsequently discussed.
作者 王永亮 张辛 朱天赐 张晴 WANG Yongliang;ZHANG Xin;ZHU Tianci;ZHANG Qing(School of Mechanical and Civil Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing),Beijing 100083,China)
出处 《力学季刊》 CAS CSCD 北大核心 2021年第2期263-271,共9页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(41877275,51608301) 中央高校基本科研业务费专项资金(2019QL02) 中国矿业大学(北京)越崎青年学者计划项目(2019QN14) 中国矿业大学(北京)本科教育教学改革与研究项目(J200709,J190701)。
关键词 水压裂缝 等高裂缝解析模型 裂缝长度与开度 动力粘度系数 注入流速 剪切模量 敏感系数 hydraulic fracture analytical model with uniform fracture height length and aperture of fracture dynamic viscosity coefficient injection flow rate shear modulus sensitivity coefficient
  • 相关文献

参考文献1

二级参考文献72

  • 1陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(z1):868-872. 被引量:137
  • 2贾长贵,陈军海,郭印同,杨春和,徐敬宾,王磊.层状页岩力学特性及其破坏模式研究[J].岩土力学,2013,34(S2):57-61. 被引量:50
  • 3张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18. 被引量:1229
  • 4赵文瑞.泥质粉砂岩各向异性强度特征.岩土工程学报,1984,1:32-36.
  • 5Economides M J,Nolte K G.油藏增产措施[M].北京:石油工业出版社,2002,16-18/609-634.
  • 6石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 7庄茁,柳占立,成斌斌,等.扩展有限单元法[M].北京:清华大学出版社,2012.
  • 8UNITED STATES ENERGY INFORMATION ADMINISTRATION. Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States, Analysis and projections[R]. 2013.
  • 9SZEKELY J, EVAN J W. A structural model for gas-solid reactions with a moving boundary-II: The effect of grain size, porosity and temperature on the reaction of porous pellets[J]. Chemical Engineering Science, 1971, 26:1901-1913.
  • 10SOHN H Y, SZEKELY J. A structural model for gas-solid reactions with a moving boundary-III: A general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas[J]. Chemical Engineering Science, 1972, 27:763-778.

共引文献28

同被引文献37

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部