摘要
讨论了一类广义非线性奇异摄动积分-微分发展方程Robin问题.首先,利用广义Fredholm积分方程求解方法,得到了模型的外部解.其次,引入多重尺度变量,构造了Robin问题解的边界层校正项.然后利用伸长变量,得到了解的初始层校正项,并构造了奇异摄动问题的形式解的合成展开式.最后,用泛函分析不动点理论证明了广义解的渐近展开式的一致有效性.
A class of generalised nonlinear singular perturbation integral-differential evolution equation Robin problem is discussed.Firstly,the outer solution of the model is obtained by using a solving method of the Fredholm type integral equation.Next,the boundary layer corrective term of the solution is constructed by using the variables of multiple scales.Then the initial layer corrective term of the solution for the original model is found using the stretched variable.And the composed expansion of formal solution for the singular perturbation problem is constructed.Finely,the asymptotic expansion of the generalised solution is proved by using the fixed point theory of the functional analysis.
作者
冯依虎
莫嘉琪
FENG Yi-hu;MO Jia-qi(Department of Electronics and Information Engineering,Bozhou College,Bozhou 236800;Department of Mathematics,Shanghai University,Shanghai 200436;School of Mathematics&Statistics,Anhui Normal University,Wuhu 241003)
出处
《工程数学学报》
CSCD
北大核心
2021年第4期564-572,共9页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(41275062)
安徽省教育厅自然科学重点基金(KJ2017A90,KJ2018A0964)
安徽省高校优秀青年人才支持计划重点项目(gxyqZD2016520)
安徽省高等学校省级质量工程重点教研项目(2018jyxm0594).
关键词
奇摄动
发展方程
渐近解
singular perturbation
evolution equation
asymptotic solution