期刊文献+

基于带惯性粒子的粒子群算法的高压电缆状态监测研究 被引量:5

Research on High Voltage Cable Condition Monitoring Based on Particle Swarm Algorithm with Inertial Particles
下载PDF
导出
摘要 高压电缆的绝缘健康状态是保证电力可靠性的关键因素。当电力电缆在电网中大量使用时,会因电磁、机械、热及环境腐蚀等原因而发生电缆绝缘破损的现象,从而减少了电缆的使用寿命,影响了电缆运行的稳定性与安全性。当电缆发生严重故障时,会导致电网瘫痪,给人们的生活和工业生产带来巨大的经济损失。针对以上问题,首先,介绍了国内外电力电缆绝缘监测的方法;然后,将粒子群算法(PSO)的特点运用到降低所监视数据波形的噪声中,达到快速分类目的,在故障发生时PSO降噪方法可以有效地提取有效波形信号;最后,通过仿真实验证明了PSO算法在电缆状态监测中的有效性,以及粒子群算法可应用于电缆故障分类和参数优化。 The insulation health of high-voltage cables is a key factor to ensure power reliability.When a large number of power cables are used in the grid,the phenomenon of cable insulation damage will occur due to electromagnetic,mechanical,thermal and environmental corrosion and other reasons,thus reducing the service life of the cable,affecting the operation stability and safety of the cable.When the fault of the cable is serious,it will lead to the breakdown of the power grid,which will bring huge economic losses to people's life and industry.To solve the above problems,it is described that the methods of monitoring power cable insulation at home and abroad firstly in this paper.Subsequently,the algorithm characteristics of particle swarm optimization(PSO)are applied to reduce the noise of the monitored data waveform,so as to achieve the purpose of rapid classification.When the fault occurs,the PSO noise reduction method can effectively extract the effective waveform signal.Finally,these are proved that the effectiveness of PSO algorithm in cable condition monitoring and the particle swarm optimization algorithm can be applied to cable fault classification and parameter optimization with the simulation experiment.
作者 黄泽宇 王森 李豫佳 冷月妍 HUANG Ze-yu;WANG Sen;LI Yu-jia;LENG Yue-yan(Graduate Department,Shenyang 110136,Liaoning Province;College of Automation,Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province)
出处 《沈阳工程学院学报(自然科学版)》 2021年第3期55-60,共6页 Journal of Shenyang Institute of Engineering:Natural Science
关键词 粒子群算法(PSO) 电缆 故障监测 Particle swarm optimization(PSO) Cable Fault monitoring
  • 相关文献

参考文献3

二级参考文献10

共引文献26

同被引文献42

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部