期刊文献+

基于融合深度卷积神经网络的人脸识别方法研究 被引量:2

Research on Face Recognition Method Based on Fusion of Deep Convolutional Neural Network
下载PDF
导出
摘要 如何在有效的时间内准确地识别人脸信息成为目前需要研究的重要问题,笔者基于融合深度卷积神经网络对人脸识别方法进行研究,首先设计了基于融合深度卷积神经网络的人脸识别方法,即利用PCA算法提取人脸特征,然后激活神经网络函数,最后构建神经网络模型对单个深度卷积网络进行训练,从而实现人脸识别.实验结果表明:基于融合深度卷积神经网络的人脸识别方法优于其他方法,具有一定的扩展性. How to accurately recognize face information within an effective time has become an important issue that needs to be studied at present,so based on the fusion of deep convolutional neural networks,the method of face recognition is studied.The research first designed a face recognition method based on the fusion of deep convolutional neural networks,that is,extracting facial features from the PCA algorithm,then activating the neural network function,building the neural network model,and then training a single deep convolutional network,thus Realize face recognition.The experimental results show that the proposed neural network face recognition method is superior to the method and has a certain scalability.
作者 褚玉晓 CHU Yuxiao(School of Electronics and Information Engineering,SIAS University,Zhengzhou Henan 451150,China)
出处 《信息与电脑》 2021年第10期173-175,共3页 Information & Computer
基金 河南省高等学校重点科研项目(项目编号:19B520027)。
关键词 融合深度卷积 人脸识别 神经网络 PCA算法 fusion deep convolution face recognition neural networks PCA algorithm
  • 相关文献

参考文献20

二级参考文献123

共引文献228

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部