期刊文献+

Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus 被引量:9

原文传递
导出
摘要 The present work formulated a materials design approach,a cluster-formula-embedded machine learning(ML)model,to search for body-centered-cubic(BCC)β-Ti alloys with low Young’s modulus(E)in the Ti–Mo–Nb–Zr–Sn–Ta system.The characteristic parameters,including the Mo equivalence and the cluster-formula approach,are implemented into the ML to ensure the accuracy of prediction,in which the former parameter represents the BCC-βstructural stability,and the latter reflects the interactions among elements expressed with a composition formula.Both auxiliary gradient-boosting regression tree and genetic algorithm methods were adopted to deal with the optimization problem in the ML model.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期824-834,共11页 计算材料学(英文)
基金 It was supported by the National Natural Science Foundation of China[No.91860108 and U1867201] the National Key Research and Development Plan(2017YFB0702401) Natural Science Foundation of Liaoning Province of China(Grant No.2019-KF-05-01) the Fundamental Research Funds for the Central Universities(DUT19LAB01).
关键词 alloys MODULUS FORMULA
  • 相关文献

参考文献6

二级参考文献67

共引文献63

同被引文献52

引证文献9

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部