期刊文献+

Tribotronic bipolar junction transistor for mechanical frequency monitoring and use as touch switch 被引量:3

原文传递
导出
摘要 Tribotronics,a new field that involves the coupling of triboelectricity and semiconductors,has attracted great interest in the nanoenergy and nanoelectronics domains.This paper proposes a tribotronic bipolar junction transistor(TBJT)that incorporates a bipolar junction transistor and a triboelectric nanogenerator(TENG)in the single-electrode mode.When the mobile triboelectric layer slides on the device surface for electrification,a bias voltage is created and applied to the emitter junction,and then the base current from the TENG is amplified.Based on the fabricated TBJT,a mechanical frequency monitoring sensor with high sensitivity and excellent stability and a finger-triggered touch switch were developed.This work demonstrated for the first time a tribotronic device with simultaneously controlled voltage and current voltage/current simultaneously controlled tribotronic device,which has promising potential applications in micro/nano-sensors,human-machine interactions,intelligent instrumentation,wearable electronics,and other applications.
出处 《Microsystems & Nanoengineering》 EI CSCD 2018年第1期65-72,共8页 微系统与纳米工程(英文)
基金 The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.51475099) Beijing Talents Foundation(2017000021223TD04) Beijing Nova Program(No.Z171100001117054) the Youth Innovation Promotion Association,CAS(No.2014033) the“Thousands Talents”program for the pioneer researcher and his innovation team,China the National Key Research and Development Program of China(2016YFA0202704).
  • 相关文献

参考文献2

二级参考文献35

  • 1Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553-3567.
  • 2Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532-543.
  • 3Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACSNano 2013, 7, 9533-9557.
  • 4Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active- matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821-826.
  • 5Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S., Kim, R. H., Wang, S. D.; Wu, J.; Won, S. M.; Tao, H., Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
  • 6Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516-1519.
  • 7Someya, T.; Sekitani, T.; lba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. P. Natl. Acad. Sci. USA 2004, 101, 9966-9970.
  • 8Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807-810.
  • 9Krupenkin, T.; Taylor, J. A. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2011, 2, 448.
  • 10Qi, Y.; Kim, J.; Nguyen, T. D.; Lisko, B.; Purohit, P. K.; McAlpine, M. C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled pzt ribbons. NanoLett. 2011, 11, 1331-1336.

共引文献20

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部