期刊文献+

原子层沉积构建高性能催化剂的研究进展 被引量:1

Recent progress in fabrication of high efficient catalysts by atomic layer deposition
下载PDF
导出
摘要 催化剂在能源化工领域具有重要应用,精确设计及调控催化剂结构可有效改善催化剂的性能。原子层沉积(ALD)是基于饱和自限制的气-固界面反应技术,被认为是调控活性相的组成、尺寸及落位最有效的方式之一。本文综述了ALD技术在调控催化剂活性相结构、设计多功能型催化剂及提高催化剂稳定性等方面的研究进展。重点阐述了ALD技术在调控催化剂活性相颗粒尺寸和表界面结构、设计多功能核壳结构及多孔材料限制性催化剂等方面的应用。ALD设计及控制金属沉积的技术优势可实现对催化剂活性、产物选择性和稳定性的有效调控,但其在复杂结构载体的沉积机理方面仍未得到充分研究,是今后研究工作重点。此外,利用ALD技术设计结构清晰、功能多样的催化剂来进一步提高催化性能及认识其反应机理也是未来的研究方向。 Catalysts play vital roles in energy and chemical industries.Precise design and regulation of catalysts'structure could improve their catalytic performance.Atomic layer deposition(ALD)is a gassolid reaction technique that follows the saturated self-limiting theory,which has been regarded as one of the most efficient methods in tuning the composition,size and location of the active phases.In this review,we present a comprehensive summary of ALD in regulating the sizes and the surface/interface of activity phases,and the design of multi-functional core-shell structural and porous materials.The advantages of ALD enable the effective regulations of the catalyst's activity,selectivity and stability.However,the mechanism of ALD for the supports with complex structure has not been studied systematically,which should be the key point in the following researches.Moreover,to design well-organized and versatile catalysts to improve the catalytic activity and to acquire the reaction mechanism are also the research directions in the future.
作者 高亚 徐丹 王树元 朱地 GAO Ya;XU Dan;WANG Shuyuan;ZHU Di(Energy Research Institute,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250014,Shandong,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2021年第8期4242-4252,共11页 Chemical Industry and Engineering Progress
基金 高校院所引进高端人才项目(2019GXRC046) 科教产融合创新试点工程项目(2020KJC-ZD07)。
关键词 催化剂 原子层沉积 纳米粒子 扩散 选择性 界面 核壳结构 catalyst atomic layer deposition nanoparticles diffusion selectivity interface core-shell structure
  • 相关文献

参考文献2

二级参考文献29

  • 1S.M.George. Chemical Reviews . 2010
  • 2D.Hausmann,J.Becker,S.L.Wang,R.G.Gordon. Science . 2002
  • 3Y.Sun,Q.Liu,S.Gao,H.Cheng,F.Lei,Z.Sun,Y.Jiang,H.Su,S.Wei,Y.Xie. Nat.Commun . 2013
  • 4Y.Sun,F.Lei,S.Gao,B.Pan,J.Zhou,Y.Xie. Angewandte Chemie International Edition . 2013
  • 5A.Hellman,S.Klacar,H.Gro?nbeck. Journal of the American Chemical Society . 2009
  • 6Y.Sun,S.Gao,Y.Xie. Chemical Society Reviews . 2014
  • 7A.L.Linsebigler,G.Q.Lu,J.T.Yates. Chemical Reviews . 1995
  • 8S.Bai,L.Yang,C.Wang,Y.Lin,J.Lu,J.Jiang,Y.Xiong. Angewandte Chemie International Edition . 2015
  • 9S.Bai,C.Wang,M.Deng,M.Gong,Y.Bai,J.Jiang,Y.Xiong. Angewandte Chemie International Edition . 2014
  • 10Y.H.Zhang,X.F.Weng,H.Li,H.B.Li,M.M.Wei,J.P.Xiao,Z.Liu,M.S.Chen,Q.Fu,X.H.Bao. Nano Letters . 2015

共引文献3

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部