期刊文献+

TCL: a taxi trajectory prediction model combining time and space features 被引量:2

原文传递
导出
摘要 Vehicle trajectory modeling is an important foundation for urban intelligent services. Trajectory prediction of cars is a hot topic. A model including convolutional neural network(CNN) and long short-term memory(LSTM) was proposed, which is named trajectory-CNN-LSTM(TCL). CNN can extract the spatial features of the trajectory in the input image. Besides, LSTM can extract the time-series features of the input trajectory. After that, the model uses fully connected layers to merge the two features for the final predicting. The experiments on the Porto dataset of The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases(ECML-PKDD) show that the average prediction error of TCL is reduced by 0.15 km, 0.42 km, and 0.39 km compared to the trajectory-convolution(T-CONV), multi-layer perceptron(MLP), and recurrent neural network(RNN) model, respectively.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期63-75,共13页 中国邮电高校学报(英文版)
基金 supported by the National Key Research and Development Program of China (2017YFB0503700) the Fundamental Research Funds for the Central Universities (2019PTB-010)。
  • 相关文献

参考文献3

二级参考文献14

  • 1WEI L Y, ZHENG Y, PENG W. Constructing popular mutes from uncertain trajectories [ C]/! Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012:195 -203.
  • 2MARMASSE N, SCHMANDT C. A user-centered location model [ J]. Personal and Ubiquitous Computing, 2002, 6(5) : 318 - 321.
  • 3ASHBROOK D, STARNER T. Using GPS to learn significant loca- tions and predict movement across multiple users [ J]. Personal U- biquitous Computing, 2003, 7(5): 275-286.
  • 4TIESYTE D, JENSEN C S. Similarity-based prediction of travel times for vehicles traveling on known routes [ C]/! Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2005:1 -10.
  • 5ZIEBART B D, MAAS A L, DEY A K, et al. Navigate like a cab- bie: probabilistic reasoning from observed context-aware behavior [ C]//Proceedings of the 10th International Conference on Ubiqui- tous Computing. New York: ACM Press, 2008: 322- 331.
  • 6HORVITZ E, KRUMM J. Some help on the way: opportunistic rou- ting under uncertainty [ C]// Proceedings of the 14th International Conference on Ubiquitous Computing. New York: ACM Press, 2012:371-380.
  • 7YUAN J, ZHENG Y, XIE X, et al. Driving with knowledge from the physical world [ C]//Proceedings of the 17th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2011:316 -324.
  • 8赵越,刘衍珩,余雪岗,魏达,单长伟,赵洋.基于模式挖掘与匹配的移动轨迹预测方法[J].吉林大学学报(工学版),2008,38(5):1125-1130. 被引量:7
  • 9郭黎敏,丁治明,胡泽林,陈超.基于路网的不确定性轨迹预测[J].计算机研究与发展,2010,47(1):104-112. 被引量:15
  • 10彭曲,丁治明,郭黎敏.基于马尔可夫链的轨迹预测[J].计算机科学,2010,37(8):189-193. 被引量:38

共引文献32

同被引文献30

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部