期刊文献+

Data-driven approach to solve vertical drain under time-dependent loading

原文传递
导出
摘要 Currently,the vertical drain consolidation problem is solved by numerous analytical solutions,such as time-dependent solutions and linear or parabolic radial drainage in the smear zone,and no artificial intelligence(AI)approach has been applied.Thus,in this study,a new hybrid model based on deep neural networks(DNNs),particle swarm optimization(PSO),and genetic algorithms(GAs)is proposed to solve this problem.The DNN can effectively simulate any sophisticated equation,and the PSO and GA can optimize the selected DNN and improve the performance of the prediction model.In the present study,analytical solutions to vertical drains in the literature are incorporated into the DNN–PSO and DNN–GA prediction models with three different radial drainage patterns in the smear zone under timedependent loading.The verification performed with analytical solutions and measurements from three full-scale embankment tests revealed promising applications of the proposed approach.
出处 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第3期696-711,共16页 结构与土木工程前沿(英文版)
  • 相关文献

参考文献2

二级参考文献2

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部