期刊文献+

污染修复场地中基于显著性的目标检测方法 被引量:1

Detection method of object based on saliency in polluted remediation site
下载PDF
导出
摘要 为解决污染修复环境中施工人员实时防护问题,提出使用基于改进的流形排序显著性检测算法对施工人员进行检测。首先,利用超像素分割对图像进行处理,建立适合的图模型;然后利用流形排序方法将图像各边界节点作为背景种子得到第一个显著图;再利用流形排序对第一阶段的显著图进行阈值分割,得到最终的显著图。实验表明,改进方法在视觉效果上与传统检测方法相比,得到的显著区域有很好的改善,并且在精确率、召回率、F值等评价指标上有较好的反映。 In order to solve the problem of real-time protection of construction personnel in the environment of pollution remediation.This paper proposes to use the improved salience detection algorithm based manifold ranking to detect the construction personnel.Firstly,super-pixel segmentation is used to process the image and establish a suitable image model;Then the nodes on the image boundary are used as background seeds by manifold ranking algorithm;Finally,the first stage saliency map is segmented by using manifold sorting to get the final saliency map.Experimental results show that the improved method is better than the traditional detection method in visual effect,and has a better reflection on the precision rate,recall rate,F-measure and other evaluation indicators.
作者 张宝峰 曹珍珍 朱均超 刘娜 ZHANG Baofeng;CAO Zhenzhen;ZHU Junchao;LIU Na(Tianjin Key Laboratory of Complex System Control Theory and Application,Tianjin University of Technology,Tianjin 300384,China;School of Electrical and Electronic Engineering,Tianjin University of Technology,Tianjin 300384,China)
出处 《天津理工大学学报》 2021年第3期55-59,共5页 Journal of Tianjin University of Technology
基金 天津市互联网跨界融合创新科技重大专项(18ZXRHSF00240)。
关键词 污染修复环境 流形排序 显著性检测 超像素分割 pollution remediation environment anifold ranking salience detection super-pixel segmentation
  • 相关文献

参考文献10

二级参考文献74

  • 1张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 2Liu Tie,Yuan Zejian,Sun Jian.Learning to Detect a Salient Object[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(2):353-367.
  • 3Feng Songhe,Xu De,Yang Xu.Attention-driven Salient Edge(s) and Region(s) Extraction with Application to CBIR[J].Signal Processing,2010,90(1):1-15.
  • 4Hou Xiaodi,Zhang Liqing.Saliency Detection:A Spectral Residual Approach[C]//Proceedings of IEEE Con-ference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2007:1-8.
  • 5Guo Chenlei,Zhang Liming.A Novel Multi-resolution Spatiotemporal Saliency Detection Model and Its Appli-cations in Images and Video Compression[J].IEEE Transactions on Image Processing,2010,19(1):185-198.
  • 6Itti L,Koch C,Niebur E.A Model of Saliency-based Visual Attention for Rapid Scene Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intel-ligene,1998,20(11):1254-1259.
  • 7Ma Yufei,Zhang Hongjiang.Contrast-based Image Attention Analysis by Using Fuzzy Growing[C]//Proceedings of the 11th ACM International Conference on Multimedia.New York,USA:ACM Press,2003:374-381.
  • 8Achanta R,Hemami S,Estrada F,et al.Frequency-tuned Salient Region Detection[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2009:1597-1604.
  • 9Cheng Mingming,Zhang Guoxin,Mitra N.Global Contrast Based Salient Region Detection[C]//Pro-ceedings of IEEE Conference on Computer Visual and Pattern Recognition.Washington D.C.,USA:IEEE Press,2011:409-416.
  • 10Cao Xianghai,Cao Xiujun.Background Aware Sa-liency Detection[C]//Proceedings of TENCON’13.Washington D.C.,USA:IEEE Press,2013:1-4.

共引文献86

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部