期刊文献+

小波变换低频信息与Xception网络的静态手势识别 被引量:1

Low-frequency Information of Wavelet Transform and Static Gesture Recognition of Xception Network
下载PDF
导出
摘要 轮廓对于提高手势识别的准确率与缩短响应时间具有重要作用。经过小波变换得到的低频信息能准确反映手势轮廓。Xception卷积神经网络能减少模型参数并获得更高的分类准确率。因此,提出一种小波变换低频信息与Xception网络的静态手势识别方法。首先,将原始ASL的8000张手势图像经二维小波变换批量处理后得到低频、水平高频、垂直高频和对角线高频共4种图像,然后将低频图像作为Xception的输入进行手势识别,并设计了原始、水平高频、垂直高频和对角线高频4种图像的对比实验。实验结果表明,Xception能对低频信息与原始信息进行有效的特征学习,低频图像内存是原始图像的2/13,运行时间是原始图像的88.5%,但低频图像的准确率只比原始图像低0.2%。该方法大大减少了训练图像所需的存储容量并提高了运行速度。最后比较Xception与VGG16、VGG19、ResNet和ResNetV2常用的手势识别网络,表明Xception在较短时间内能取得更好的识别效果。 Contours play an important role in improving the accuracy and response time of gesture recognition.The low-frequency information obtained by wavelet transform can accurately reflect the contour of the gesture.Xception convolutional neural network can reduce model parameters and obtain higher classification accuracy.Therefore,a static gesture recognition method based on wavelet transform low-frequency information and Xception network is proposed.First,the 8000 gesture images of the original ASL are batch-processed by two-dimensional wavelet transformation to obtain 4 kinds of images:low frequency,horizontal high frequency,vertical high frequency and diagonal high frequency,and then use the low frequency image as the input of Xception for gesture recognition.In order to verify the effectiveness of low-frequency information,a comparative experiment of four images of original,horizontal high frequency,vertical high frequency and diagonal high frequency was designed.Experimental results show that Xception can perform effective feature learning on low-frequency information and original information.The low-frequency image memory is 2/13 of the original image,and the running time is 88.5%of the original image,but the accuracy of the low-frequency image is only 0.2 lower than the original image.This method greatly reduces the storage capacity required for training images and increases the running speed.Finally,a comparison between Xception and VGG16,VGG19,ResNet and ResNetV2 commonly used gesture recognition networks shows that Xception can achieve better recognition results in a shorter period of time.
作者 王学慧 赵跃鹏 王嘉炜 李振 田秋红 WANG Xue-hui;ZHAO Yue-peng;WANG Jia-wei;LI Zhen;TIAN Qiu-hong(School of Information Science and Technology,Zhejiang Sci-Tech University;Faculty of Mechanical Engineering&Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《软件导刊》 2021年第8期12-19,共8页 Software Guide
基金 国家自然科学基金项目(51405448) 浙江理工大学博士科研启动项目(11122932611817) 浙江省大学生科技成果推广项目(14530031661961) 国家级大学生创新创业训练计划项目(201910338012) 国家级大学生科技创新训练项目(202010338052)。
关键词 手势识别 Xception网络 小波变换 卷积神经网络 gesture recognition Xception network wavelet transform convolution neural network
  • 相关文献

参考文献12

二级参考文献162

  • 1刘晙,茹庆云.基于快速小波变换的高适应性图像检索技术研究[J].图学学报,2014,35(2):262-267. 被引量:2
  • 2何振亚.多维数字图像处理技术 [M].北京:国防工业出版社,1995..
  • 3[1]T.Ahmad,C.J.Taylor,A.Lanitis,T.F.Cootes.Tracking and recognising hand gestures, using statistical shape models.Image and Vision Computing,1997,15:345~352
  • 4[2]Y.Azoz,L.Devi,and R.Sharma.Vision-Based Human Arm Tracking for Gesture Analysis Using Multimodal Constraint Fusion.Proc.1997 Advanced Display Federated Laboratory Symp.,Adelphi,Md.,1997
  • 5[3]David Alan Becker,Sensi.A Real-Time Recognition,Feedback and Training System for T'ai Chi Gestures.(David Alan Becker, Master thesis),MIT Media Lab,May,1997
  • 6[4]A.Bobick,J.Davis.Real-time recognition of activity using temporal templates.Proc.of Third IEEE Workshop on applications of computer vision,Florida,1996,39~42
  • 7[5]G.Bradski,Boon-Lock Yeo,Minerva M.Yeung.Gesture for video content navigation.SPIE 3656 (Proc.of the IS&T/SPIE Conf.on Storage and Retrieval for Image and Video Database VII),San Jose,California,1999,230~242
  • 8[6]Quek F.Unencumbered gestural interaction.IEEE Multimedia,1996:36~47
  • 9[7]R.Cipolla and N.J.Hollinghurst.Human-robot interface by pointing with uncalibrated stereo vision.image and vision computing,Mar.1996,14:171~178
  • 10[8]J.L.Crowley,F.Berard,J.Coutaz.Finger tracking as a input device for augmented reality.Proc.Int'l Workshop on Automatic Face and Gesture Recognition,Zurich,Switzerland,1995,195~200

共引文献2321

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部