摘要
为提高ZPW-2000R轨道电路诊断系统的准确性,通过研究列车运行时轨道电路设备数据的特征,提出基于统计过程控制与模式识别相结合的算法,经测试实验研究表明,所提算法能够准确地识别轨道上列车的运行并判断电路设备的状态,为诊断系统智能化提供有效的解决方案。
In order to improve the accuracy of zpw-2000R track circuit diagnosis system,by studying the characteristics of track circuit equipment data when the train is running,an algorithm based on the combination of statistical process control and pattern recognition is proposed.The experimental results show that the proposed algorithm can accurately identify the train running on the track and judge the status of circuit equipment,it provides an eff ective solution for intelligent diagnosis system.
作者
黄春雷
禹建丽
Huang Chunlei;Yu Jianli
出处
《铁路通信信号工程技术》
2021年第S01期90-94,共5页
Railway Signalling & Communication Engineering
关键词
轨道电路
列车运行数据特征
统计过程控制
模式识别
track circuit
characteristics of train operation data
statistical process control
pattern recognition