期刊文献+

基于YOLOv5s的滑雪人员检测研究 被引量:3

Research on the Detection of Skiers Based on YOLOv5s
下载PDF
导出
摘要 针对滑雪人员目标检测研究中,存在的检测精度低、速度慢,不同姿态识别效果差等问题,采用YOLOv5s网络模型,改进损失函数,增加平衡因子,在自制滑雪人员数据集上对网络进行训练,利用训练好的网络进行图像特征提取,实现滑雪人员的快速检测。基于YOLOv5s的滑雪人员检测模型可以有效识别不同姿态下的滑雪人员,mAP值达到99.87%,Recall值达到97.66%,检测速度可以达到7ms/帧。实验结果表明,改进的YOLOv5s滑雪人员检测模型,检测速度快,检测精度高,鲁棒性强,有较好的可扩展性,既满足检测精度要求,又满足检测速度要求。 Aiming at the problems of low detection accuracy,slow speed and poor recognition effect of different postures in the target detection of skiers.In this paper,the YOLOv5 s network model is used to improve the loss function and increase the balance factor.The network is trained on the self-made dataset of skiers.The trained network is used for image feature extraction to realize the rapid detection of skiers.The ski personnel detection model based on YOLOv5s can effectively identify the ski personnel under different postures.The mAP value reaches 99.87 %,the Recall value reaches 97.66 %,and the detection speed can reach 7 ms/frame.The experimental results show that the improved YOLOv5s ski personnel detection model proposed in this paper has fast detection speed,high detection accuracy,strong robustness and good scalability,which meets the requirements of both detection accuracy and detection speed.
作者 彭雅坤 曹伊宁 刘晓群 Liu Xiaoqun;Peng Yakun;Cao Yining(College of Information Engineering,Hebei University of Architecture,Zhangjiakou 075000,China)
出处 《长江信息通信》 2021年第8期24-26,共3页 Changjiang Information & Communications
基金 河北省技术创新引导计划项目-科技冬奥专项资助《基于5G的VR场景下冰雪突发事故高精度定位技术研究》(20470302D)。
关键词 人工智能 计算机视觉 YOLOv5s网络模型 目标检测 滑雪人员检测 Artificial intelligence Computer vision YOLOv5s network model Target detection Skier's detection
  • 相关文献

参考文献1

二级参考文献22

共引文献23

同被引文献19

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部