期刊文献+

基于量子群智能优化检测虚拟现实中物体碰撞 被引量:2

Collision Detection of Objects in Virtual Reality Based on Quantum Swarm Intelligence Optimization
下载PDF
导出
摘要 为了改善虚拟现实中物体碰撞检测的性能,采用量子群智能优化算法进行碰撞检测;首先对待检测物体进行盒包围并投影至二维平面,根据盒包围交叉空间粗略判断物体是否发生碰撞;然后根据盒包围交叉空间对待检测物体的特征提取,构建人工鱼群,并对人工鱼群位置进行量子编码;将人工鱼群的位置变化转变为量子动态相移变化,以待检测物体的同类特征距离的倒数作为人工鱼群的实物浓度函数;最后采用人工鱼群算法实现物体的碰撞检测。仿真结果表明,通过合理设置动态相移变化因子和视野参数,可以获得较好的碰撞检测准确度,与常用的碰撞检测算法相比,该算法的碰撞检测精度高,且耗时少。 To improve performance of object collision detection in virtual reality,quantum swarm intelligence optimization algorithm was used to complete the collision detection.Firstly,objects to be detected were surrounded by a box and projected to a two-dimensional plane.According to the cross space surrounded by the box,the collision of the objects was roughly judged.According to feature extraction of the objects to be detected by using the cross space surrounded by the box,artificial fish swarms were then constructed,and position of the artificial fish swarms was quantum coded.The position change of the artificial fish swarms was transformed into quantum dynamic phase shift change,and reciprocals of the same characteristic distance of the objects to be detected were used as object concentration functions of the artificial fish swarms.Finally,the collision detection of the objects was realized by using artificial fish swarm algorithm.The simulation results show that by setting dynamic phase-shift change factors and field of view parameters reasonably,better collision detection accuracy can be obtained.Compared with commonly used collision detection algorithms,the proposed algorithm has higher accuracy and less time-consuming.
作者 肖世龙 张德育 刘源 黄勇 刘猛 毛容 XIAO Shilong;ZHANG Deyu;LIU Yuan;HUANG Yong;LIU Meng;MAO Rong(Art and Design College,Shenyang Ligong University,Shenyang 110159,Liaoning,China;School of Information Science and Engineering,Shenyang Ligong University,Shenyang 110159,Liaoning,China;School of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110159,Liaoning,China;Guangxi Key Laboratory of Brain and Cognitive Neuroscience,Guilin Medical University,Guilin 541001,Guangxi,China)
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2021年第5期423-427,432,共6页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金项目(61862019) 辽宁省自然科学基金重点项目(20180520038) 教育部产学合作协同育人项目(201802284028) 广西科技计划项目(2017GXNSFAA198223)。
关键词 虚拟现实 碰撞检测 人工鱼群算法 量子编码 动态相移 virtual reality collision detection artificial fish swarm algorithm quantum coding dynamic phase shift
  • 相关文献

参考文献11

二级参考文献80

  • 1马登武,叶文,李瑛.基于包围盒的碰撞检测算法综述[J].系统仿真学报,2006,18(4):1058-1061. 被引量:111
  • 2黄光球,陆秋琴,郑彦全.基于鱼群算法的油田多级站定位优化方法研究[J].西安石油大学学报(自然科学版),2006,21(4):98-102. 被引量:7
  • 3许强,吕晓峰,马登武.三角形和三角形相交测试技术研究[J].计算机仿真,2006,23(8):76-78. 被引量:19
  • 4何雪薇,龚光红.虚拟人造动的动力学实现方法研究[C].2003全国系统仿真年会论文集.西安:中国系统仿真学.2003:614-619.
  • 5F.Chin, C.A.Wang. Optimal Algorithms for the Intersection and the Minimum Distance Problems between Planar Polygons. IEEE Transactions on Computers,1993.C-32(12):1203-1207.
  • 6N.K. Govindaraju, M.C. Lin, D. Manocha. Fast and reliable collision culling using graphics hardware[J].IEEE Transactions on Visuallization and Computer Graphics,2006.12(2):143-154.
  • 7M. Shinya, M. Forgue. Interference Detection through Rasteriza- tion. Journal of Visua-lization and Computer Animation, 1997.2(8):131-134.
  • 8A. Gress, G. Zachmann. Object-space interference detection on programmable graphics hardware[C]. SIAM Conference on Geometric Design and Computing Washington. DC: Nashboro Press,2006:13-17.
  • 9GOVINDARAJU N K, LINM C, MANOCHA D.Quick- CULLIDE: fast inter-and intra-object collision culling using graphics hardware[C] //Proc of IEEE Virtual Reality,2005: 59-66.
  • 10HEIDELBERGER B, TESCHNER M, GROSS M.Volumetric collision detection for derformable objects, TR395[R].Zurich, Switzerland: Computer Science Department ETH,2003.

共引文献73

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部