期刊文献+

深度学习在轴承故障诊断领域的应用研究 被引量:17

Application of Deep Learning in Bearing Fault Diagnosis
下载PDF
导出
摘要 深度学习具有强大的学习能力和特征分类能力,能够在海量、多源和高维测量数据中进行特征提取,具有不依赖人工干预而进行模型诊断和泛化的能力,广泛应用于设备故障诊断领域。阐述了深度学习的典型模型:深度置信网络(DBN)、卷积神经网络(CNN)和自编码器(AE),重点论述了深度学习在轴承故障诊断领域的应用进展。最后讨论了深度学习在轴承故障诊断领域所存在的问题及发展趋势。 With strong learning ability,feature classification ability,and generalization capabilities,deep learning could be used in the feature extraction and model diagnosis based on massive,multi-source and high-dimensional measurement data,with no reliance on human intervention,and it can be widely used in the field of equipment fault diagnosis.The typical models of deep learning:deep belief network(DBN),convolutional neural network(CNN)and automatic encoders(AE)were described,and the application progress of deep learning in bearing fault diagnosis was emphasized.Finally,the problems and development trends of deep learning in the field of bearing fault diagnosis were discussed.
作者 洪腾蛟 丁凤娟 王鹏 冯定 凃忆柳 HONG Teng-jiao;DING Feng-juan;WANG Peng;FENG Ding;TU Yi-liu(School of Mechanical Engineering, Yangtze University, Jingzhou 434023, China;Hubei Engineering Research Center for Oil & Gas Drilling and Completion Tools, Jingzhou 434023, China;College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China)
出处 《科学技术与工程》 北大核心 2021年第22期9203-9211,共9页 Science Technology and Engineering
基金 国家科技重大专项(2016ZX05038-002-LH001) 湖北省中央引导地方科技发展专项(2017ZYYD006) 湖北省技术创新专项(2019AAA010) 中海石油(中国)有限公司湛江分公司项目(CCL2017ZJFN2272)。
关键词 深度学习 故障诊断 神经网络 发展趋势 轴承 deep learning fault diagnosis neural network development trend bearing
  • 相关文献

参考文献35

二级参考文献213

  • 1杨青,孙佰聪,朱美臣,杨青川,刘念.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523. 被引量:13
  • 2杨宇,于德介,程军圣.基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J].振动与冲击,2005,24(2):12-15. 被引量:47
  • 3MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 4MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 5李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 610 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 7Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 8Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 9Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 10Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.

共引文献1601

同被引文献234

引证文献17

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部