期刊文献+

基于CenterNet目标检测算法的改进模型 被引量:3

Improved Model Based on CenterNet Object Detection Algorithms
下载PDF
导出
摘要 在原CenterNet算法中,以Hourglass为Backbone的目标检测模型平均精度均值高于one-stage算法,但检测速度较低。为此,基于原有CenterNet目标检测算法,对Hourglass-104模型进行改进,设计一种Hourglass-208模型,并给出双特征金字塔网络特征图融合方法。在此基础上对目标大小和训练采用smoothL1损失函数,提出一种新的可端到端训练的目标检测算法T_CenterNet。在MSCOCO数据集上的实验结果表明,该算法目标检测的评估指标AP_(50)、AP_(S)、AP_(M)分别为63.6%、31.6%、45.8%,检测速度达到36frame/s,综合性能优于原CenterNet算法。 In the original CenterNet algorithms,the object detection model with Hourglass as Backbone has a higher mean Average Precision(mAP)than other one-stage algorithms,but it is limited by the low detection speed.To address the problem,a new model named Hourglass-208 is proposed by using the original CenterNet object detection algorithm to improve the Hourglass-104 model.Additionally,a feature map fusion method for Twin Feature Pyramid Networks(TFPN)is given.On this basis,smooth L1 is used for the loss function of the object size to establish a new object detection algorithm,T_CenterNet,which can perform end-to-end training.Experimental results on the MS COCO data set show that the target detection evaluation index AP_(50),AP_(S),AP_(M) of the proposed algorithm are 63.6%,31.6%,45.8%,respectively,and the detection speed of the algorithm reaches 36 frame/s.The comprehensive performance of the proposed algorithm is better than that of the original CenterNet algorithm.
作者 石先让 苏洋 提艳 宋廷伦 戴振泳 SHI Xianrang;SU Yang;TI Yan;SONG Tinglun;DAI Zhenyong(College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210001,China;Chery Advanced Engineering&Technology Center,Wuhu,Anhui 241006,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第9期240-251,共12页 Computer Engineering
基金 安徽省发改委重大研发项目“面向智能网联汽车的全线控底盘开发及测试验证”。
关键词 深度学习 目标检测 Anchor-free方法 关键点 锚框 deep learning object detection Anchor-free method key points anchor
  • 相关文献

同被引文献20

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部