摘要
以大尺寸(100mm×200mm,200cm^(2))多蛇形流场为研究对象,通过数值模拟和实验的方法探究了阴极多蛇形流场的排布方式对高温聚合物电解质膜燃料电池输出性能的影响。相比于竖向排布多蛇形流场,基于横向排布的多蛇形流场的电池在进气量1.527L/min和电压0.6V时展示出了更高的平均输出电流密度222.78mA/cm^(2)和更均匀的电流密度分布(均一指数为75.3%)。在此基础上,进一步对横向排布流场结构的气体通道数进行了优化。结果表明入口气体通道数的增加可以显著减少流场进出口的压降损失,但电池平均输出电流密度和均一指数也有所降低。其中,9通道横排多蛇形流场有较高的电池性能和较好的电流密度分布均匀性(相对于14通道)和较低的压降损失(相对于6通道),对进一步提高高温聚合物电解质膜燃料电池的性能及稳定性和商业化应用具有指导意义。
This work investigates the influence of the arrangements of a large-scale(100mm×200mm,200cm^(2))multiple-serpentine flow field on the output performance of high-temperature polymer electrolyte membrane fuel cells(HT-PEMFCs)by numerical simulation and experimental study.Compared with the vertical arrangement manner,the horizontal one allowed the fuel cell to produce a higher average current density of 222.78mA/cm^(2) and a more uniform current density distribution(uniformity index of 75.3%)when the air intake was 1.527L/min and the cell voltage was 0.6V.Furthermore,the number of the gas channels in the flow field was optimized.The results showed that the increase of inlet gas channels significantly reduce the pressure drop,but the average output current density and uniformity index of the fuel cell were decreased accordingly.The multiple-serpentine flow field with 9 channels horizontally arranged showed higher output performance and better current density distribution uniformity than that with 14 channels and lower pressure drop than that with 6 channels.This work provides a good guide for improving the performance and stability of HT-PEMFCs and their commercial applications.
作者
罗来明
陈思安
王海宁
张劲
卢善富
相艳
LUO Laiming;CHEN Si’an;WANG Haining;ZHANG Jin;LU Shanfu;XIANG Yan(Beijing Laboratory of Bio-inspired Materials and Devices&School of Space and Environment,Beihang University,Beijing 100191,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2021年第9期4975-4985,共11页
Chemical Industry and Engineering Progress
基金
国家重点研发计划(2018YFB1502303)
国家自然科学基金(21872003)。
关键词
高温聚合物电解质膜燃料电池
流场设计
排布方式
数值模拟
结构优化
high-temperature polymer electrolyte membrane fuel cells(HT-PEMFCs)
flow field design
arrangement
simulation
structural optimization