期刊文献+

Optimization of hot-air microwave combined drying control system based on air outlet temperature and humidity monitoring

原文传递
导出
摘要 Microwave drying is one of the most important drying methods in agriculture.The online measurement and control of material dried,as a challenging research issue,is helping to improve the drying quality of the final product and the energy utilization efficiency of microwave dryers.In order to realize the online measurement of temperature in microwave drying,a detection strategy was based on the temperature and humidity monitoring at the air outlet of coupling hot air and microwave drying method.LabVIEW programming software was employed to collect the temperature and humidity signal value at the outlet of the dryer to estimate the drying degree of the material.According to the amount of moisture removal in real-time,the microwave input power was adjusted gradually in the microwave drying process.Taking potato as material dried,the microwave power of microwave and hot air coupling drying is monitored to realize the real-time regulation.The results showed that the total color difference value of the product of 3.09,the rehydration ratio of 2.92,the unit energy consumption of 17419.35 kJ/kg,and the drying rate of 0.442 g/s were obtained.The minimum comprehensive weighted score of the product was 26.36.Compared with the orthogonal experiment,the optimal drying process was obtained as the total color difference value of the product of 2.84,the rehydration ratio of 3.01,the unit energy consumption of 17419.35 kJ/kg,and the drying rate of 0.397 g/s.The minimum comprehensive weighted score of the product was 20.67,and the difference was not significant.The control strategy not only solves the non-uniform phenomenon of drying,and makes the microwave drying real-time and continuous,but also improves the drying efficiency and quality.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第4期255-261,共7页 国际农业与生物工程学报(英文)
基金 This study was financially supported by the Major Science and Technology Special Fund of Science and Technology Department of Yunnan Province(Grant No.2018ZF004) Analysis and Test Fund of Kunming University of Science and Technology(Grant No.2019T20030031).
  • 相关文献

参考文献13

二级参考文献109

共引文献341

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部