期刊文献+

Model predictive control system based on direct yaw moment control for 4WID self-steering agriculture vehicle 被引量:3

原文传递
导出
摘要 A model predictive control(MPC)approach based on direct yaw moment control(DYC)was proposed to realize the self-steering drive for a newly autonomous four-wheel independent-drive(4WID)agricultural electric vehicle.The front axle and rear axle of the vehicle chassis could rotate simultaneously around their respective center points and cut the turning radius in half at most through specific mechanical chassis structure design and four-wheel electrical drive.It had great potential to reduce wheel traffic damage to field crops if two rear electrical drive wheels can be controlled to follow wheel tracks of two front wheels during self-steering operation.Therefore,firstly,a two-degree-freedom dynamics model presenting this agricultural electric vehicle was constructed.Then,an MPC controller combined with DYC was applied to arrange torques from four wheels to match desired turning angles,direct yaw moments and travel speeds.The simulation results existed small steady error of steering angles below 0.22%as they were set at 5°,followed with yaw moment under 0.17%and velocity less than 1%.Finally,according to experiment results,the vehicle successfully made a working turning radius of 9.1 m with maximum error of 0.55%when desired steering angles were 5°at the speed of 1 m/s and a minimum turning radius of 1.51 m with maximum error of 6.6%when steering angles were 30°at the speed of 0.5 m/s.It verified that the 4WID agricultural electric vehicle could drive autonomously and steady with small self-steering angle error under the proposed control system and has a feasibility to reduce wheel traffic damage during driving and operation.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第2期175-181,共7页 国际农业与生物工程学报(英文)
基金 This research work was funded by the National Natural Science Foundation of China(Grant No.51975260) Jiangsu Provincial Key Research and Development Program(Grant No.BE2018372),Jiangsu Natural Science Foundation(Grant No.BK20181443) Zhenjiang City Key Research and Development Program(Grant No.NY2018001) Qing Lan Project of Jiangsu Province,the Priority Academic Program Development(PAPD)of the Jiangsu Higher Education Institutions,China.The authors would like to acknowledge the other colleagues of the team for providing assistance in the experiment.
  • 相关文献

参考文献5

二级参考文献29

共引文献69

同被引文献37

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部