期刊文献+

基于纹理消除的液晶屏缺陷检测 被引量:5

Defect detection of LCD based on texture elimination
原文传递
导出
摘要 对液晶屏表面进行缺陷检测时,其表面纵横分布的纹理会对检测精度造成干扰。提出了一种液晶屏缺陷检测方法,首先采用基于相对总变差模型的图像结构提取方法抑制液晶屏纹理,该模型对非统一或各向异性的纹理均适用,能有效分解液晶图像中的结构信息和纹理。提取后的结构信息采用High-boost滤波器增强高频分量同时保持低频分量的特性,对图像中的缺陷进行显著性检测。实验结果表明该方法确实有效地抑制了背景纹理信息,同时完整地保留了缺陷信息,实现了液晶屏缺陷的显著性检测并提高了液晶图像的缺陷检测准确性。 When defect detection is carried out on the surface of liquid crystal screen, the horizontal and horizontal texture of the surface will interfere with the detection accuracy. A defect detection method for liquid crystal screen is proposed. Firstly, the texture of liquid crystal screen is suppressed by the image structure extraction method based on the relative total variation model. This model is applicable to both non-uniform and anisotropic textures, and can effectively decompose the structural information and texture in liquid crystal image. The extracted structural information is enhanced by High-boost filter while keeping the characteristics of low-frequency component, and the saliency detection of defects in the image is carried out. The experimental results show that this method can effectively suppress the background texture information and retain the defect information completely, which can realize the saliency detection of LCD screen defects and improve the accuracy of LCD image defect detection.
作者 汪永勇 侯俊 李梦思 薛彤 肖雄 Wang Yongyong;Hou Jun;Li Mengsi;Xue Tong;Xiao Xiong(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《电子测量技术》 北大核心 2021年第12期93-96,共4页 Electronic Measurement Technology
关键词 液晶屏纹理 缺陷检测 结构提取 High-boost滤波 LCD screen texture defect detection structure extraction High-boost filtering
  • 相关文献

参考文献11

二级参考文献47

  • 1赵军芳.傅里叶变换在数字图像处理中的应用[J].国外电子测量技术,2004,23(6):17-20. 被引量:9
  • 2XIE X. A review of recent advances in surface defect detection using texture analysis techniques [ J ]. Electronic Letters on Computer Vision and Image Analysis, 2008, 7(3) : 1 -22.
  • 3JING J, LI H, LIP. Combined fabric defects detection approach and quadtree decomposition [ J ]. Journal of Industrial Textiles ,2012,41 (4) :331 - 334.
  • 4NGAN H Y T, PANG G K H, YUNG N H C. Automated fabric defect detection: a review [ J ]. Image and Vision Computing, 2011, 29(7) : 442 -458.
  • 5GOLUB G H, REINSCH C. Singular value decomposition and least squares solutions [ J ]. Numerische Mathematik, 1970, 14 (5) : 403 - 420.
  • 6KALNINS Y R, PAKALNITE I. Singular value decomposition of images with the simple elements [ J]. Computer Modelling and New Technologies, 2011,15(1): 49 -54.
  • 7CHEN S, FENG J. Research on detection of fabric defects based on singular value decomposition [ C ]// IEEE International Conference on Information and Automation (ICIA). Harbin: [s. n.], 2010: 857- 860.
  • 8CHANDRA J K, DATTA A K. Detection of defects in fabrics using subimage-based singular value decomposition [ J ]. Journal of the Textile Institute, 2013, 104(3): 296-230.
  • 9王建辉,崔连延,顾树生.图像矩阵降维压缩的一种新方法[J].控制与决策,2007,22(12):1408-1410. 被引量:5
  • 10陈传峰,朱长仁,宋洪芹.基于巴特沃斯低通滤波器的图像增强[J].现代电子技术,2007,30(24):163-165. 被引量:15

共引文献85

同被引文献41

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部