期刊文献+

基于视觉的传感器位置记忆追踪方法 被引量:2

Memory tracking method of sensor location based on vision
下载PDF
导出
摘要 在采用某些特殊传感器测量参数时,需要在传感器移除后确定出原来的测量位置,比如采用穴位传感器测量出患者多个经络穴位的异常表现后,需要确定出异常穴位的实际位置,对其施加干预措施,缓解患者疼痛并改善身体状况。为此,研究了传感器的记忆追踪问题,提出了一种基于视觉的传感器位置记忆追踪方法,在传感器和被测对象上分别粘贴AprilTag,在测量过程中,采用AprilTag检测算法计算出传感器与被测对象之间的位置关系;在传感器移除后,利用这种位置关系和被测对象上的AprilTag追踪到传感器的测量位置,追踪精度达1 mm以内,为进一步处置提供参考。 When some special sensors are used to measure parameters,the original measurement position needs to be determined after the sensor is removed.For example,after using the acupoint sensor to measure the abnormal performance of multiple meridians and acupoints of the patients,it is necessary to determine the actual position of abnormal acupoints and apply the intervention measures to them,which can relieve the pain and improve the physical condition of the patients.To solve this problem,the memory tracking problem of the sensor was studied,and a vision-based memory tracking method of sensor location was proposed.The AprilTag was pasted on the sensor and the tested object respectively.In the process of measurement,the AprilTag detection algorithm was used to calculate the position relationship between the sensor and the tested object.After the sensor was removed,the measurement position of the sensor was tracked by using the position relationship and AprilTag on the tested object,and the tracking accuracy was within 1 mm,which could provide reference for the further disposal.
作者 史勇民 楼顺天 安盼盼 SHI Yongmin;LOU Shuntian;AN Panpan(GETHIK Group Co.,Ltd.,Hangzhou 311100,China;School of Electronic Engineering,Xidian University,Xi'an 710071,China)
出处 《应用光学》 CAS CSCD 北大核心 2021年第5期853-858,共6页 Journal of Applied Optics
基金 国家重点专项(2019YFC1711902) 国家自然科学基金(62071350)。
关键词 记忆追踪 位置追踪 检测算法 AprilTag 视觉 memory tracking position tracking detection algorithm AprilTag Vision
  • 相关文献

参考文献5

二级参考文献59

  • 1张凡,蔡涛,刘文达,范亚雷.基于改进JPS算法的电站巡检机器人路径规划[J].电子测量技术,2020,43(8):10-16. 被引量:7
  • 2冯慧君,陶素娟,李隆.基于双线性插值算法的图像放缩技术与实现[J].计算机应用与软件,2004,21(7):117-119. 被引量:24
  • 3马驰,张红云,苗夺谦,张学东.改进的多阈值动态二值化算法[J].计算机工程,2006,32(6):203-205. 被引量:25
  • 4Marecenaro L,Ferrari M,Marchesottl L.Multiple Object Tracking Under Heavy Occlusions by Using Kalman Filter Based on Shape Matching[A].IEEE Int Conf on Image Processing[C].New York,2002:341-344.
  • 5Natan Pterfreund.Robust Tracking of Position and Velocity with Kalman Snakes[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1999,22(5):564-569.
  • 6Galvin B,McCane B,Novins K.Visual Snakes for Occlusion Analysis[A].IEEE Computer Society Conf on Computer Vision and Pattern Recognition[C].Colorado,1999:294-299.
  • 7Loutast E,Diamantarast K,Pitast I.Occlusion Resistant Object Tracking[A].IEEE Int Conf on Image Processing[C].Thessaloniki,2001:65-68.
  • 8Hieu T Nguyen,Marcel Worring,Rein Van Den Boomgaard.Occlusion Robust Adaptive Template Tracking[A].Proc 8th IEEE Int Conf on Computer Vision[C].Vancouver,2001:678-683.
  • 9Franco Oberti,Simona Calcagno,Michela Zara.Robust Tracking of Humans and Vehicles in cluttered Scenes with Occlusions[A].IEEE Int Conf on Image Processing[C].New York,2002:629-632.
  • 10Ken Ito,Shigeyuki Sakane.Robust View-based Visual Tracking with Detection of Occlusions[A].IEEE Int Conf on Robotics and Automation[C].Seoul,2001:1207-1213.

共引文献200

同被引文献32

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部