期刊文献+

基于VOD视频用户行为的协同过滤推荐算法优化

Optimization of Collaborative Filtering Recommendation Algorithm Based on VOD Video User Behavior
下载PDF
导出
摘要 传统电视点播VOD的协同过滤推荐算法被广泛应用,但随着大数据时代的到来,该算法的扩展性缺点也逐渐突出,传统算法越来越不适合解决海量数据带来的相似度伸缩性问题。本文提出一种基于hadoop框架的改进的协同过滤推荐算法,以弥补其缺陷。实验结果显示本算法的结果平滑性受海量相同视频估值问题影响相对较小,推荐准确性也有所优化。 Traditional VOD collaborative filtering recommendation algorithm is widely used,but with the advent of big data era,scalability shortcomings of the algorithm has become increasingly prominent,and traditional algorithm is not suitable for solving similarity scalability problem caused by massive data.This paper proposes an improved collaborative filtering recommendation algorithm based on hadoop framework to make up for its defects.The experimental results show that the smoothness of proposed algorithm is less affected by massive same video estimation problem,and recommendation accuracy is also optimized.
作者 余杰 李一凡 Yu Jie;Li Yifan(Jiangsu Cable Data Network Co.,Ltd,Jiangsu 210000,China)
出处 《广播与电视技术》 2021年第8期76-78,共3页 Radio & TV Broadcast Engineering
关键词 协同过滤 扩展性问题 大数据 Collaborative filtering Scalability Big data
  • 相关文献

参考文献7

二级参考文献34

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部