摘要
针对常用单电感多输出(Single-inductormultipleoutput,SIMO)开关变换器控制技术每个控制环路均需要补偿网络的问题,文中提出一种无补偿网络的连续导电模式(continuous conduction mode,CCM) SIMO Buck变换器电压型变频纹波控制技术。以单电感三输出(single-inductor triple-output,SITO) Buck变换器为例,推导CCM SITO Buck变换器工作于不同开关时序的切换条件;根据主开关管和输出支路开关管的切换方程,建立电压型变频纹波控制CCM SITO Buck变换器的s域小信号模型,从频率的角度通过波德图对输出支路的交叉影响进行理论分析。最后,搭建相应的实验样机,通过实验对比分析负载电流跳变对其他支路输出电压的影响。研究结果表明:相比于现有的控制技术,提出的电压型变频纹波控制CCM SITO Buck变换器技术显著抑制了输出支路的交叉影响,且控制环路无补偿网络,设计简单。
Aiming at the problem that each control loop in traditional control technologies for single-inductor multipleoutput(SIMO) switching converter needs a compensator, this paper proposed a novel voltage-mode-ripple variable frequency control technique for CCM SIMO Buck converter without compensator in control loop. The single-inductor triple-output(SITO) Buck converter operating in continuous conduction mode(CCM) was taken as an example to derive the transfer condition for different switching sequences. Based on the switching equations of the main-switch and the outputswitches, the small-signal model for voltage-mode-ripple variable frequency controlled CCM SITO Buck converter was established. The cross-regulations were analyzed via Bode plots. Finally, an experimental prototype platform was implemented to verify the correctness of the theoretical analysis. The research results indicate that the proposed voltage-mode-ripple variable frequency control significantly reduces the cross-regulation of CCM SITO Buck converter. Moreover, the control loop has no compensator;therefore, the design is simple.
作者
周述晗
周国华
贺明智
刘雪山
ZHOU Shuhan;ZHOU Guohua;HE Mingzhi;LIU Xueshan(College of Electrical Engineering,Sichuan University,Chengdu 610065,Sichuan Province,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,Sichuan Province,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2021年第17期6003-6012,共10页
Proceedings of the CSEE
基金
国家自然科学基金项目(61771405)
四川省科技计划(2019JDTD0003)。
关键词
单电感多输出
连续导电模式
变频控制技术
交叉影响
single-inductor multiple-output(SIMO)
continuous conduction mode(CCM)
variable frequency control
cross-regulation