期刊文献+

基于决策树支持向量机算法的船用设备故障诊断 被引量:5

Research on Marine Equipment Fault Diagnosis Based on Decision Tree Support Vector Machine Algorithm
下载PDF
导出
摘要 目的提高船用设备的智能化水平,增强船舶的安全性、可靠性,对船上设备进行状态监测,并基于监测数据对设备健康状况进行评估,对可能存在的故障工况进行识别。方法通过采集机舱内的振动数据,对数据进行预处理、快速傅里叶变换,提取1/3倍频带特征,将倍频带谱信号作为特征向量,利用支持向量机算法进行模型训练及分类。对于船上多种工况及可能存在的多种故障类别,采用决策二叉树方法,提出一种快速、准确的状态监测及故障诊断策略。结果在实验室工况下识别准确率接近100%。结论该方法能够对船用设备进行状态监控、故障诊断、健康评估等提供支持,为设备检修、传感器布置等决策提供依据。 In order to improve the intelligent level of marine equipment and enhance the safety and reliability of ships,it is urgent to monitor the status of the equipment on the ship,and evaluate the health status of the equipment based on the monitoring data to identify possible fault conditions.The vibration data collected in the cabin was preprocessed using fast Fourier transform to extract the one-third octave band features,and the octave band spectrum signal was used as the feature vector.Support vector machine algorithm was used for model training and classification.For a variety of working conditions on the ship and possible multiple fault categories,the decision binary tree method was used to propose a fast and accurate state monitoring and fault diagnosis strategy.The identification accuracy under laboratory conditions was close to 100%.This method can provide support for state monitoring,fault diagnosis and health assessment of marine equipment,and provide basis for decision-making of equipment maintenance and sensor arrangement.
作者 唐其琯 车驰东 TANG Qi-guan;CHE Chi-dong(School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《装备环境工程》 CAS 2021年第9期72-77,共6页 Equipment Environmental Engineering
关键词 支持向量机 故障诊断 决策树 智能机舱 support vector machine fault diagnosis decision tree intelligent engine room
  • 相关文献

参考文献11

二级参考文献200

共引文献1165

同被引文献66

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部