期刊文献+

基于GBDT算法的焊缝背面熔宽预测 被引量:4

Prediction of Weld Backside Molten Pool Width Based on GBDT Algorithm
原文传递
导出
摘要 针对智能化焊接中的熔池质量控制环节,采用端到端的集成学习模型,提出一种更加有效的实时预测方法。基于集成学习算法GBDT建立起焊接参数、熔池尺寸与焊缝背部熔宽之间的预测模型。训练数据集由GTAW焊接仿真数据以及焊接实验数据组成。该模型有效提高了焊接过程中背面熔宽的预测准确性,进而为智能化焊接提供更有效的熔池质量控制。 Using the end-to-end ensemble learning model, a more effective real-time prediction method was proposed for the quality control of molten pool in intelligent welding. Based on the ensemble learning algorithm GBDT, the prediction model of welding parameters, molten pool size and weld backside molten pool width was established. The training data set consists of GTAW welding simulation data and welding experiment data. The model can effectively improve the prediction accuracy of backside molten pool width in the process of welding, and then provide more effective molten pool quality control for intelligent welding.
作者 石运良 罗宇 陈正科 SHI Yunliang;LUO Yu;CHEN Zhengke(School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《热加工工艺》 北大核心 2021年第17期110-114,共5页 Hot Working Technology
关键词 焊接智能制造 GBDT算法 焊缝背面熔宽预测 intelligent welding GBDT algorithm prediction of weld backside molten pool width
  • 相关文献

参考文献3

二级参考文献16

  • 1潘存海,杜素梅,宋永伦.铝合金点焊位移信号时频域分析与质量判定[J].焊接学报,2007,28(7):33-36. 被引量:3
  • 2周春光,梁艳春.计算智能[M].吉林:吉林大学出版社.2009:207.
  • 3Hao M,Osman K A. Development in characterization of the resist-ance spot welding of aluminum [ J]. Welding Journal, 1996, 75(1) : Is - 8s.
  • 4Cho Y, Rhee S. Primary circuit dynamic resistance spot monitoringand its application to the quality estimation during resistance spotwelding[ J]. Welding Journal, 2002,81(6) : 104s - Ills.
  • 5Wang X F, Li Y B,Meng G X. Monitoring of resistance spot weldquality using electrode vibration signals[ J]. Measurement Scienceand Technology, 2011,22(4) : 1-11.
  • 6Mart1 n 0,L6pez M, Mart * n F. Artificial neural networks forquality control by ultrasonic testing in resistance spot welding[ J].Journal of Materials Processing Technology, 2006, 183(3) : 226 -233.
  • 7Podr2aj P, Polajnar I. Expulsion detection system for resonancespot welding based on a neural network[ J]. Measurement Scienceand Technology, 2004,15(2) : 592 -598.
  • 8Jou M. Real time monitoring weld quality of resistance spot weldingfor the fabrication of sheet metal assemblies [ J]. Journal of Materi-als Processing Technology, 2004, 132(1) : 102 - 113.
  • 9徐东,杨润党,王文荣,金烨.船体结构焊接变形预测与控制技术研究进展[J].舰船科学技术,2010,32(1):132-137. 被引量:19
  • 10王智祥,王正伦.2205双相不锈钢焊接应力与变形的SVM回归预测研究[J].船舶工程,2010,32(1):74-78. 被引量:6

共引文献11

同被引文献53

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部