期刊文献+

Single-Channel Speech Enhancement Based on Improved Frame-Iterative Spectral Subtraction in the Modulation Domain 被引量:1

下载PDF
导出
摘要 Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).
出处 《China Communications》 SCIE CSCD 2021年第9期100-115,共16页 中国通信(英文版)
基金 National Natural Science Foundation of China(NSFC)(No.61671075) Major Program of National Natural Science Foundation of China(No.61631003)。
  • 相关文献

参考文献2

二级参考文献16

  • 1DONOHO D L. Compressed sensing [ J]. IEEE Transac-tions on Information Theory, 2006,52(4) : 1289 — 1306.
  • 2CANDES E J, ROMBERG J,TAO T. Robust uncertaintyprinciples : Exact signal reconstruction from highly incom-plete frequency information [ J ]. IEEE Transactions on In-formation Theory,2006,52(2) :489 -509.
  • 3TSAIG Y,DONOHO D. Extensions of compressed sensing[J]. Signal Processing,2006,86(3) :533 -548.
  • 4BOLL S F. Suppression of acoustic noise in speech usingspectral subtraction[ J]. IEEE Transactions on Acoustics,Speech, and Signal Processing, 1979,27 ( 2 ) : 113 - 120.
  • 5BEROUTI M,SCHWARTZ R,MAKHOUL J. Enhancementof speech corrupted by acoustic noise[ C] //IEEE Interna-tional Conference on Acoustics, Speech and Signal Process-ing(ICASSP). 1979:208 -211.
  • 6HU Y,LOIZOU PC. A generalized subspace approach forenhancing speech corrupted by colored noise [ J ]. IEEETransactions on Speech and Audio Processing,2003,11(4):334-341.
  • 7GOLDSTEIN J S,REED I S,SCHARF L L. A multistagerepresentation of the Wiener filter based on orthogonal pro-jections [J ]. IEEE Transactions on Information Theory,1998,44(7) :2943 -2959.
  • 8DONOHO D L. For most large underdetermined systemsof linear equations,the minimal LI norm solution is alsothe sparsest solution [ J ]. Communications on Pure andApplied Mathematics, 2006,59(6) :797 -829.
  • 9TROPP J A,GILBERT A C. Signal recovery from randommeasurements via orthogonal matching pursuit [ J]. IEEETransactions on Information Theory, 2007,53(12) : 4655-4666.
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712

共引文献2

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部